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ABSTRACT

This study considers a three-dimensional brittle elastic half-space on the flat
Ox1x3- plane boundary of which an infinitely long cylinder lies along the Oxs-
contact line and in presence of gravitational forces. Under the load P (per unit
length) exerted by the cylinder along the xo- direction, fracture propagates over
large distance. The expected crack is planar with a straight front parallel to xs,
inclined with respect to x1xs by an angle . The crack under load is represented
by a continuous distribution of two straight edge dislocation families
J (J= /I and 1) parallel to x3 with Burgers vectors b, and by parallel and
perpendicular to the solid flat surface. Analytical expressions for crack-tip
stresses, crack extension force G (per unit length of the crack front), spatial
forms about the crack tip of crack dislocation distributions D; and
corresponding relative displacement ¢; of the faces of the crack are obtained.
These make it possible to account for the commonly observed fact that cracks
can break into two pieces very large blocks of stone in absence of externally
applied forces from the experimenter.

Keywords : fracture mechanics, linear elasticity, dislocations, singular
integral equations, Poisson effect.
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RESUME

Fissures fragiles dans un demi-espace élastique a trois dimensions
sous la pression de contact rectiligne d’un cylindre : présentation des
forces gravifiques

Cette étude considére un demi-espace élastique fragile a trois dimensions avec
comme surface le plan Ox1xs, sur lequel un cylindre infiniment long est couché,
le long de la ligne de contact Oxs; les forces gravifiques sont prises en compte.
Sous la charge P (par unité de longueur) exercée par le cylindre dans la direction
X2, la rupture se propage sur une grande distance. La fissure attendue est plane avec
un front droit paralléle a xs, inclinée par rapport a xix3 d’un angle 6. La fissure
sous charge est représentée par une distribution continue de deux familles de

dislocations droites J (J=// et L) paralléles & xs de vecteurs de Burgers b,, et

b, paralléles et perpendiculaires a la surface plane du solide. Des expressions

analytiques pour les contraintes en téte de fissure, force d'extension de fissure
G (par unité de longueur du front de fissure), dépendances spatiales au niveau
du front de fissure des distributions de dislocation de fissure D; et déplacement
relatif correspondant ¢; des faces de la fissure sont obtenues. Celles-ci
permettent de tenir compte du fait couramment observé selon lequel des
fissures peuvent briser, en deux morceaux, de trés gros blocs de pierre en
I'absence de forces appliquées extérieurement par I'expérimentateur.

Mots-clés : mécanique de la rupture, dislocation, équation intégrale
singuliére, effet poisson.

I - INTRODUCTION

The present study aims at introducing gravitational forces in fracture
mechanics. The motivation comes from the following common observation.
Blocks of stone with large dimensions (say of the order of three meters or larger)
can be easily fractured into two pieces (Figure 1). First, cylindrical holes are
introduced at top surface using drills. Second, fracture is initiated from the
holes with the help of sledgehammers and wedges. Without any additional
action, the crack will move with time downward other very large distance and
separate the block of stone into two parts. The fracture surface is perfectly flat.
This sentence can be posed: a crack with a critical size in a solid can begin an
expansion under gravitational forces only to split completely into two pieces a

large solid. The explanation is as follows. The weight O'ZAZW = pgX, increases

downward vertically (along the x>-direction), with the position x. of the crack
front (p is the density of the stone and g the acceleration due to gravity); in the
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two other directions x1 and xs exist induced normal Poisson’s stresses —V,0py "

(va is Poisson’s ratio). These are Poisson’s stresses that produce induced
macroscopic tensile forces perpendicular to the crack plane. These promote
failure of the stone over large distance. To do so, we shall refer to the crack
model used in a previous work [1] (Figure 2). This is a three-dimensional
elastic half-space on the flat boundary of which is posed, in the xs- direction, a
long cylinder with radius R.

block of stone

o/

P

crack front /

Poisson stress ] 1/

- - ——— - — = N (O —

A
“~

Figure 1 : Block of stone with four holes at top surface to introduce fracture
with the help of sledgehammer and wedge. The crack initiates and
moves downward. These are Poisson’s stresses which produce
macroscopic tensile forces perpendicular to the crack plane;
these induced tensile forces produce failure of the stone over
large distance. The weight of the stone is the externally applied
force and Poisson's forces are induced normal forces

A planar straight-fronted crack with length AB=I, inclined around x3 by angle
6 from the surface, is present ; OA = (a1, az, 0) and OB = (b, bz, 0). This is an
expected crack configuration at large distance from the cylinder under contact
pressure; this is explained in [1]. The crack under load is represented by a
continuous distribution of dislocations with infinitesimal Burgers vectors. The
stress induced by the crack is equivalent to that produced by the dislocations.
Two straight edge dislocation families J (J=// and 1) parallel to x3 with
Burgers vectors b, = (b,0,0) and b, =(0,b,0) parallel and perpendicular to

the solid flat surface are considered. To a crack dislocation J located at x; is
associated an elevation h from Oxixs (Figure 2) with distribution function D;

such that D, (x)dx, represent the number of crack dislocations J in small
x1- interval dx, about x. It is required to find the equilibrium dislocation
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distributions under the combined actions of the cylinder (o)*, gravitational
forces (o)™ and crack dislocation stresses (o) . The methodology is given

in Section 2, very similar to that described in [1] where ()" and (o))" are

given. Results are provided in Section 3. Discussion and conclusion form
Sections 4 and 5.

Il - METHODOLOGY

We consider one crack in the half-space, located between A and B in the Oxix»-
plane (Figure 2) as described in Section 1. The crack system is completely.

Figure 2 : Brittle elastic half-space under load by a cylinder (P is the load
per unit length of the cylinder) posed along the xs- direction on its
flat boundary surface; a planar crack of finite extension I is
present, located between positions A and B in the Oxix. - plane
and inclined by angle 0 from the planar boundary. The crack
front is straight, parallel to the cylinder axis. Our modelling
assumes the half-space to be infinitely extended and the cylinder
(radius R) and crack to run indefinitely along the xs- direction

defined when the dislocation distributions Dy (J=//and L) are known. For this
purpose, we ask the crack faces to be free from traction:
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o,,—oh/oxa,, =0
{ 12 X1 11 (1)

G, —0ohloxG,=0

(&) is the stress at any position P(X,, X,, X;) in the medium and is linked to D;. In
(1), we are concerned with the point P (X, X, = h(X,), X;) of the crack faces only.

()= ()" +(@)" +(5)" + @™ 0
by
57 (P)= [ o (% =X, %, %)D, (x)dx,  (3=//and L). 3)

o’ is the stress produced by a dislocation J located at an elevation h(x,) from

the half-space boundary. (1) provides two integral equations with Cauchy-type
singular kernels that determine the D;. When these have been found, the relative
displacement ¢; of the faces of the crack, crack-tip stresses, and crack extension
force G per unit length of the crack front are obtained by integrations (Section 3).

11l - RESULTS
I11-1. Crack dislocation distributions

We just need to use the spatial dependence of D; about the crack tip B. The
condition (1) can be managed to read:

1
~ , w1
f, " (B)+C, I dle//(yl)m:O
1-5ly /by 1 )
1 ‘ o , (4)
fLAiw(B)"'Cl '[ dY1DL(Y1)1 -=0
1-6by /o, -V

fr"(B)=op+oy, —poloh+ay ), f1Y(B)=0y,+0y —pylon+0y,)
p,=tan @ ,C = ub/27(1-v). Here v is Poisson’s ratio and W is the shear
modulus. Inverting (4) in a similar way as in [2], we arrive at

Py = Zbaoanl\ll_Y1 ; (5)

D, =,

_ 1
\/1_ Y1
a, =" 1zC,, y1 = x1 / b1, (1-y1) positive infinitesimal value and «,
dimensionless constant [2].
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I11-2. Crack-tip stresses

In the crack plane and ahead of the crack-tip at spatial position
P.(x =b +s,%, =h(x),%;), 0 <s << by, the total stress &;;(F.) is identified

to the following formula.

by
5(s)= >, [ oo +s—x)D;(x)dx, b <<by. (6)

J=llandL b by

This formula means that only those dislocations located about the crack front
in x1- interval [b, —ob,,b ] will contribute significantly to the stress at x;= b1 +
s ahead of the crack-tip as s tends to zero; any other contribution will become

negligible for a sufficiently small value of s. Using (5) for D; and integrating
(6), we obtain

59 =% 20)) (a,+ poal)q%%,

%) =7 [(1 p3)ar, — po(3+p§)a,,]clao%,

2= [po(l py)a, +(L+3p5)a, |Cia, Zﬁﬁ_,

&(S) = 1+2—”p§(% - p,))Cit % ,

5,;,=0, j=1land2. 7)

I11-3. Crack extension force

Our expression of the crack extension force is taken from [3] and used
extensively (see [4 - 7], for example). It can be checked, easily, that this also
applies in presence of gravitational forces. A crack of length | is considered at
equilibrium under load (use Figure 2 for illustration). Then, this crack grows
almost statically over a short distance from one of its ends (say xi1= b1) while
the other end remains fixed. A work associated with a newly created surface
element As is then calculated, which is the product of the elastic force (using
(7)) on the element (just before the motion of the crack tip) by the relative
displacement of the faces of the newly created crack through As (using (5)).
This energy is then divided by As ; the limit G taken by the ratio of that energy
divided by As when the latter tends to zero is by definition the crack extension
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force per unit length of the crack front at the point Pc where As is located. We
obtain at B (bs, h(b1), x3)

__ZO—WOQaf A-W 2 AW 2
(e == [ @]+ @] ). ®)

For numerical application, we take A to coincide with the origin O (Figure 2)
and both the medium and cylinder to have equal density p. We define G a
reduced value of G as

G(B)

C=—""1 Go=21-V)apg)' R/ u 9)
0

When applied to the solid posed on the surface of earth, the specimen suffers
compression, so we write o' =—pgX,. Gis written as a function of

b, =h, /R for three different values of 6 in Figure 3 and as a function of 6 for

three values of b, in Figure 4.

IV - DISCUSSION

The modelling is considered applicable for large cracks with B far from the
cylinder. To estimate the appropriate height 62(BC) of B at which gravitational

forces only will break into two pieces the medium, from Figure 3, this would
occur at B = B¢ for which G(B,) =2y in steady motion, where y is the surface

energy. ao may be provided from experiment as an adjustable parameter.

%10°
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Figure 3: G (9) as a function of b, =h, /R for three different values of 6. It

increases continuously with b,
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Figure 4 : G (9) as a function of 6 for three different values of 52. It
decreases continuously with 6

Figure 1 corresponds to @ = z /2 with the cylinder (see Figure 2) on the four

holes of the top surface. From Figure 4, it is seen that G is larger for small 6
in agreement with observations; we can refer to [8] : Figure 5 is reproduced
from his Fig. 8.3, page 254. The depth of the crack or equivalently the length
of the crack can be evaluated in steady motion as follows. For smaller 6 values
(use Figure 4), G is larger than 2y for the crack is observed; then it decreases
with depth and should stop inside the medium when G < 2y . Because of the

small size of the specimen in Figure 5, gravitational forces are probably
negligeable. Under gravitational forces, solids suffer compression. Hence,
fracture surfaces over large distance will be aligned parallel to g, the acceleration
due to gravity, that becomes a zone axis for families of fracture planes.

Figure 5 : Cone crack in soda-lime photographed under load (P = 40kN)
from cylindrical punch, optical microscopy. The present block edge is
38.7 mm length approximately. Crack makes angle 22° to free surface.
(After Roesler, F.C. (1956) Proc. Phys. Soc. Lond. B69 981)
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V - CONCLUSION

In conclusion, we have investigated fracture propagation in a
three-dimensional elastic half-space subjected to the rectilinear contact
pressure of a cylinder lying on the flat Oxixs- plane boundary and in presence
of gravitational forces. Analytical expressions have been obtained for G, the
crack extension force per unit length of the crack front. That is a merit of the
work. This makes it possible to account for the commonly observed fact that
cracks can break into two pieces very large blocks of stone in absence of
externally applied forces from the experimenter.
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