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ABSTRACT 
 

This study considers a three-dimensional brittle elastic half-space on the flat 

Ox1x3- plane boundary of which an infinitely long cylinder lies along the Ox3- 

contact line and in presence of gravitational forces.  Under the load P (per unit 

length) exerted by the cylinder along the x2- direction, fracture propagates over 

large distance. The expected crack is planar with a straight front parallel to x3, 

inclined with respect to x1x3 by an angle θ. The crack under load is represented 

by a continuous distribution of two straight edge dislocation families                               

J (J= // and Ʇ) parallel to x3 with Burgers vectors b// and bꞱ parallel and 

perpendicular to the solid flat surface. Analytical expressions for crack-tip 

stresses, crack extension force G (per unit length of the crack front), spatial 

forms about the crack tip of crack dislocation distributions DJ and 

corresponding relative displacement ϕJ of the faces of the crack are obtained. 

These make it possible to account for the commonly observed fact that cracks 

can break into two pieces very large blocks of stone in absence of externally 

applied forces from the experimenter.  
 

Keywords : fracture mechanics, linear elasticity, dislocations, singular 

integral equations, Poisson effect. 
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RÉSUMÉ 
 

Fissures fragiles dans un demi-espace élastique à trois dimensions 

sous la pression de contact rectiligne d’un cylindre : présentation des 

forces gravifiques  
 

Cette étude considère un demi-espace élastique fragile à trois dimensions avec 

comme surface le plan Ox1x3, sur lequel un cylindre infiniment long est couché, 

le long de la ligne de contact Ox3 ; les forces gravifiques sont prises en compte. 

Sous la charge P (par unité de longueur) exercée par le cylindre dans la direction 

x2, la rupture se propage sur une grande distance. La fissure attendue est plane avec 

un front droit parallèle à x3, inclinée par rapport à x1x3 d’un angle θ. La fissure 

sous charge est représentée par une distribution continue de deux familles de 

dislocations droites J (J= // et ⊥ ) parallèles à x3 de vecteurs de Burgers 
/ /b  et 

b⊥
parallèles et perpendiculaires à la surface plane du solide. Des expressions 

analytiques pour les contraintes en tête de fissure, force d'extension de fissure 

G (par unité de longueur du front de fissure), dépendances spatiales au niveau 

du front de fissure des distributions de dislocation de fissure DJ et déplacement 

relatif correspondant ϕJ des faces de la fissure sont obtenues. Celles-ci 

permettent de tenir compte du fait couramment observé selon lequel des 

fissures peuvent briser, en deux morceaux, de très gros blocs de pierre en 

l'absence de forces appliquées extérieurement par l'expérimentateur. 
 

Mots-clés : mécanique de la rupture, dislocation, équation intégrale 

singulière, effet poisson. 

 

 

I - INTRODUCTION  
 

The present study aims at introducing gravitational forces in fracture 
mechanics. The motivation comes from the following common observation. 

Blocks of stone with large dimensions (say of the order of three meters or larger) 

can be easily fractured into two pieces (Figure 1). First, cylindrical holes are 

introduced at top surface using drills. Second, fracture is initiated from the 

holes with the help of sledgehammers and wedges. Without any additional 

action, the crack will move with time downward other very large distance and 

separate the block of stone into two parts. The fracture surface is perfectly flat. 

This sentence can be posed: a crack with a critical size in a solid can begin an 

expansion under gravitational forces only to split completely into two pieces a 

large solid. The explanation is as follows. The weight 22 2

AW gx =  increases 

downward vertically (along the x2-direction), with the position x2 of the crack 

front (ρ is the density of the stone and g the acceleration due to gravity); in the 
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two other directions x1 and x3 exist induced normal Poisson’s stresses 22

AW

A −

(νA is Poisson’s ratio). These are Poisson’s stresses that produce induced 

macroscopic tensile forces perpendicular to the crack plane. These promote 

failure of the stone over large distance. To do so, we shall refer to the crack 

model used in a previous work [1] (Figure 2). This is a three-dimensional 

elastic half-space on the flat boundary of which is posed, in the x3- direction, a 

long cylinder with radius R. 

 

 
 

Figure 1 : Block of stone with four holes at top surface to introduce fracture 

with the help of sledgehammer and wedge. The crack initiates and 

moves downward. These are Poisson’s stresses which produce 

macroscopic tensile forces perpendicular to the crack plane; 

these induced tensile forces produce failure of the stone over 

large distance. The weight of the stone is the externally applied 

force and Poisson's forces are induced normal forces 
 

A planar straight-fronted crack with length AB=l, inclined around x3 by angle 

θ from the surface, is present ; OA = (a1, a2, 0) and OB = (b1, b2, 0). This is an 

expected crack configuration at large distance from the cylinder under contact 

pressure; this is explained in [1]. The crack under load is represented by a 

continuous distribution of dislocations with infinitesimal Burgers vectors. The 

stress induced by the crack is equivalent to that produced by the dislocations. 

Two straight edge dislocation families J (J= // and ⊥ ) parallel to x3 with 

Burgers vectors 
/ / ( ,0,0)b b=  and (0, ,0)b b⊥ =  parallel and perpendicular to 

the solid flat surface are considered. To a crack dislocation J located at x1 is 

associated an elevation h from Ox1x3 (Figure 2) with distribution function DJ 

such that ' '

1 1( )JD x dx  represent the number of crack dislocations J in small                   

x1- interval '

1dx  about '

1x . It is required to find the equilibrium dislocation 
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distributions under the combined actions of the cylinder ( )A , gravitational 

forces ( )AW and crack dislocation stresses
( )( ) J . The methodology is given 

in Section 2, very similar to that described in [1] where ( )A  and  
( )( ) J  are 

given. Results are provided in Section 3. Discussion and conclusion form 

Sections 4 and 5. 

 

 

II - METHODOLOGY 
 

We consider one crack in the half-space, located between A and B in the Ox1x2- 

plane (Figure 2) as described in Section 1. The crack system is completely. 

 

 
 

Figure 2 : Brittle elastic half-space under load by a cylinder (P is the load 

per unit length of the cylinder) posed along the x3- direction on its 

flat boundary surface; a planar crack of finite extension l is 

present, located between positions A and B in the Ox1x2 - plane 

and inclined by angle θ from the planar boundary. The crack 

front is straight, parallel to the cylinder axis. Our modelling 

assumes the half-space to be infinitely extended and the cylinder 

(radius R) and crack to run indefinitely along the x3- direction 

 

defined when the dislocation distributions DJ (J= // and ⊥ ) are known. For this 

purpose, we ask the crack faces to be free from traction: 
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12 1 11

22 1 12

/ 0

/ 0

h x

h x

 

 

−  =


−  =
.                                                                                        (1) 

 

( )  is the stress at any position 1 2 3( , , )P x x x  in the medium and is linked to DJ. In 

(1), we are concerned with the point 1 2 1 3( , ( ), )CP x x h x x= of the crack faces only.  

 
(//) ( )( ) ( ) ( ) ( ) ( )A AW     ⊥= + + +                                                                           (2) 

 

1

1

( ) ( ) ' ' '

1 1 2 3 1 1( ) ( , , ) ( )

b

J J

ij ij J

a

P x x x x D x dx = −     (J= // and ⊥ ).                              (3) 

 
( )J

ij  is the stress produced by a dislocation J located at an elevation '

1( )h x  from 

the half-space boundary. (1) provides two integral equations with Cauchy-type 

singular kernels that determine the DJ. When these have been found, the relative 

displacement ϕJ of the faces of the crack, crack-tip stresses, and crack extension 

force G per unit length of the crack front are obtained by integrations (Section 3).  

 
 

III - RESULTS 
 

III-1. Crack dislocation distributions 
 

We just need to use the spatial dependence of DJ about the crack tip B. The 

condition (1) can be managed to read: 
 

1 1

1 1

1

' '

/ / 1 1 / / 1 '

11 /

1

' '

1 1 1 '

11 /

1
( ) ( ) 0

1

1
( ) ( ) 0

1

A W

b b

A W

b b

f B C dy D y
y

f B C dy D y
y





−

−

−

⊥ ⊥

−


+ =

−

 + =
 −





;                                                         (4) 

 

/ / 12 12 0 11 11( ) ( )A W A AW A AWf B p   − = + − + , 
22 22 0 12 12( ) ( )A W A AW A AWf B p   −

⊥ = + − +  

0 tanp = , 1 / 2 (1 )C b  = − . Here ν is Poisson’s ratio and µ is the shear 

modulus. Inverting (4) in a similar way as in [2], we arrive at  
 

0

1

1

1
J JD

y
 

−
,   0 1 12 1J Jb b y   −  ;                                                  (5) 

 

1/A W

J Jf C −= , y1 = x1 / b1, (1-y1) positive infinitesimal value and 0  

dimensionless constant [2].  
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III-2. Crack-tip stresses 
 

In the crack plane and ahead of the crack-tip at spatial position 

1 1 2 1 3( , ( ), )CP x b s x h x x= + = , 0 < s << b1, the total stress ( )ij CP  is identified 

to the following formula. 

 
1

1 1

( ) ' ' '

1 1 1 1

//and

( ) ( ) ( )

b

J

ij ij J

J b b

s b s x D x dx


 
= ⊥ −

= + −  ,   1 1b b  .                                (6) 

 

This formula means that only those dislocations located about the crack front 

in x1- interval 1 1 1[ , ]b b b−  will contribute significantly to the stress at x1= b1 + 

s ahead of the crack-tip as s tends to zero; any other contribution will become 

negligible for a sufficiently small value of s. Using (5) for DJ and integrating 

(6), we obtain  
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b
s p C
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
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+
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     3 0j = ,   j = 1 and 2.                                                                                  (7) 

 

III-3. Crack extension force  
 

Our expression of the crack extension force is taken from [3] and used 

extensively (see [4 - 7], for example). It can be checked, easily, that this also 

applies in presence of gravitational forces. A crack of length l is considered at 

equilibrium under load (use Figure 2 for illustration). Then, this crack grows 

almost statically over a short distance from one of its ends (say x1= b1) while 

the other end remains fixed. A work associated with a newly created surface 

element s  is then calculated, which is the product of the elastic force (using 

(7)) on the element (just before the motion of the crack tip) by the relative 

displacement of the faces of the newly created crack through s (using (5)). 

This energy is then divided by s  ; the limit G taken by the ratio of that energy 

divided by s  when the latter tends to zero is by definition the crack extension 
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force per unit length of the crack front at the point PC where s is located. We 

obtain at B (b1, h(b1), x3)  
 

( )
2

2 2
1 0

/ /
2

0

2(1 )
( ) ( ) ( )

1

A W A Wb
G B f B f B

p

 



− −

⊥

−
   = +   

+
.                                           (8) 

 

For numerical application, we take A to coincide with the origin O (Figure 2) 

and both the medium and cylinder to have equal density ρ. We define G  a 

reduced value of G as 
 

0

( )G B
G

G
= ,     2 3

0 02(1 )( ) /G g R   = −  .                                                      (9) 

 

When applied to the solid posed on the surface of earth, the specimen suffers 

compression, so we write 22 2

AW gx = − . G is written as a function of 

2 2 /b b R=  for three different values of θ in Figure 3 and as a function of θ for 

three values of 2b  in Figure 4.  

 

 

IV - DISCUSSION  
 

The modelling is considered applicable for large cracks with B far from the 

cylinder. To estimate the appropriate height 2 ( )Cb B of B at which gravitational 

forces only will break into two pieces the medium, from Figure 3, this would 

occur at B = BC for which ( ) 2cG B =  in steady motion, where γ is the surface 

energy. α0 may be provided from experiment as an adjustable parameter.  
 

 
 

Figure 3 : G  (9) as a function of 2 2 /b b R=  for three different values of θ. It 

increases continuously with 2b  
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Figure 4 : G  (9) as a function of θ for three different values of 2b . It 

decreases continuously with θ 

 

Figure 1 corresponds to θ = π / 2 with the cylinder (see Figure 2) on the four 

holes of the top surface. From Figure 4, it is seen that G  is larger for small θ 

in agreement with observations; we can refer to [8] : Figure 5 is reproduced 

from his Fig. 8.3, page 254. The depth of the crack or equivalently the length 

of the crack can be evaluated in steady motion as follows. For smaller θ values 

(use Figure 4), G is larger than 2γ for the crack is observed; then it decreases 

with depth and should stop inside the medium when 2G  . Because of the 

small size of the specimen in Figure 5, gravitational forces are probably 

negligeable. Under gravitational forces, solids suffer compression. Hence, 
fracture surfaces over large distance will be aligned parallel to g, the acceleration 

due to gravity, that becomes a zone axis for families of fracture planes.  

 

 
 

Figure 5 : Cone crack in soda-lime photographed under load (P = 40kN) 

from cylindrical punch, optical microscopy. The present block edge is 

38.7 mm length approximately. Crack makes angle 22° to free surface. 

(After Roesler, F.C. (1956) Proc. Phys. Soc. Lond. B69 981) 
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V - CONCLUSION 
 

In conclusion, we have investigated fracture propagation in a                                      

three-dimensional elastic half-space subjected to the rectilinear contact 

pressure of a cylinder lying on the flat Ox1x3- plane boundary and in presence 

of gravitational forces. Analytical expressions have been obtained for G, the 

crack extension force per unit length of the crack front. That is a merit of the 

work. This makes it possible to account for the commonly observed fact that 

cracks can break into two pieces very large blocks of stone in absence of 

externally applied forces from the experimenter.  
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