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ABSTRACT

This study's objective is to analyze the conditions of propagation of an
oscillatory front crack along a non-planar interface, under mixed mode | + Il +
Il loading. The crack model consists of a continuous distribution of three
families of non-straight dislocations having the shape of the crack front:
families 1 and 2 are edges (on average) and family 3 is screw. The associated

Burgers vectors Bj (=1, 11, 1) are directed along the applied tension and
shears x,, X, and x, directions, respectively. The dislocations are aligned along
the X, —direction and spread in x,X,—planes in a small oscillating form
&(x,%;) at an average elevationh(x,). In this part | of the study, the
displacement and stress fields of dislocations with b, and b, are given.
Results are displayed, that make easily accessible stress terms with singularities

1/x, and &(x,) (Dirac delta function), involved in the crack analysis to come
(Part Il of this work).

Keywords : linear elasticity, interface dislocations, Galerkin vector, three-
dimensional biharmonic functions, Fourier forms, linear systems
of equations.

RESUME

Fissure d'interface non plane sous sollicitation extérieure arbitraire
I. Dislocations vis et coins de type glissile

La présente étude se fixe pour objectif d'analyser les conditions de propagation
d'une fissure de front oscillatoire le long d'une interface non plane sous
sollicitation en mode mixte I+1I+11l. Le modele de fissure adopté, est une
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distribution continue de trois familles de dislocations non rectilignes ayant la
forme du front de fissure : les familles 1 et 2 sont des coins (en moyenne) et la

famille 3 est vis. Les vecteurs de Burgers infinitésimaux associes b; (j= 1, I1, 11)

sont suivant les directionsx,, X, andx,, correspondant a la tension et aux
cisaillements appliques, respectivement. Les dislocations sont suivant la
direction x, et s'étalent dans les plans x,x, dans la forme &(x, x,) a la hauteur
h(x,) . Dans cette partie | de I'étude, les champs de contrainte et de déplacement

des dislocations de vecteurs de Burgers b, et b, sont donnés. Les résultats
sont présentés de facon a rendre facilement accessibles les termes de contrainte
avec les singularités 1/x, et 5(x,) (fonction delta de Dirac) impliquées dans
I'analyse des fissures (partie 11) a venir de notre travail.

Mots-clés : élasticité linéaire, dislocations d'interface, Vecteur de Galerkin,
fonctions biharmoniques a trois dimensions, expansions en séries
de Fourier, systemes d'équations linéaires.

I - INTRODUCTION

The main objective of this study is to analyze the conditions for the propagation
of a crack, along a non-planar interface R of arbitrary shape, in a pair of two
firmly welded different solids R1 and R2. This work is fundamental by the fact
that most of the materials, used in practice, are composite materials that can
deteriorate in service by the propagation of interface cracks. To a large crack
under general applied loading, fluctuating about average fracture plane (e.g.
Ox,x,0f a Cartesian coordinate systemx;) normal to the applied tension

direction, the following description applies locally : x,, average crack
propagation direction in that plane; x,x,, local plane of the crack front and x,

, average crack-front direction. Hence, we can define a simple model by
specifying that the crack extends fromx, =—a to a, with a front lying in the

X,X, — plane in a general form x, = f (x,,x,) and an average direction that runs
indefinitely along x,. This is the model of interface crack (Figure 1) that we

shall adopt in the present study where R1 and R2 are confined for illustration
purpose in a parallelepiped of finite sizes. Clearly, this is a model that applies
to large cracks that have propagated over large distance and interfaces not far
from the average fracture plane.
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Figure 1 : Schematic illustration of the crack front in two elastic solids (1)
and (2) welded along a non-planar wavy surface that contains an
interface crack. The crack fronts lie in x,x, — planes in the form f
(1); in this geometry, the system is subjected to mixed mode 1+11+I11
loading with the applied tension in the X, —direction. The average
fracture surface (dashed) is shown perpendicular to that direction

Our method of analysis consists of representing the crack by a continuous array
of infinitesimal dislocations having the same shape as the crack front. f can be

expanded in the form of a Fourier series as

f=>(&sinK,X; +35,005K,%;)+h=E+h (1)

where n is a positive integer; h, &, &, and ., are real numbers that depend on

position x, along the crack length. From the stress fields of the dislocations,

the crack-tip stresses and crack extension force (per unit length of the crack
front) can be evaluated. Such analyses, with variable complexity of the crack
front, exist in the case of an infinitely extended isotropic medium ([1 to 7],
among others). In the case of an interface crack, mode | loading causes shear
stresses corresponding to mode Il and vice versa (for example, see [8, 9]). It is
mandatory to have the stress fields of three types of dislocation before
undertaking an analysis of the conditions of non-planar interface crack motion.
In the present part | of this study, the elastic fields of sinusoidal dislocations,
edges and screws with Burgers vectors 6, =(0,b,0) and 6,,, =(0,0,b) are
described, with special attention to stress terms with singularities 1/x, and

Dirac delta function 8(x,) that come into play in crack analyses (calculation of
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the crack extension force, for example). In what follows, the methodology for
obtaining the dislocation elastic fields and associated calculation results are
presented in Section 2 and 3, respectively. Discussion and concluding remarks
form Section 4 where, in particular, the passage from the elastic fields of
dislocations with a sinusoidal shape to those having the form f is indicated.

The second part Il of the work will deal with the elastic fields of edges (climb-
type) withb, = (b,0,0), crack-tip stresses and crack extension force when the
non-planar interface crack is loaded in mixed mode I+11+111.

Il - METHODOLOGY

We consider a dislocation lying on a non-planar interface S having the form of
a corrugated sheet that separates two firmly welded elastic solids S1 and S2 of
infinite sizes (Figure 2). S is defined by the point P, (x,, x, =&, sin &, X, X;)
and S1 and S2 occupy the regions x, >¢& sinx,x;andx, <&, sinx,X;,

respectively. The situation is shown in Figure 2 where S1 and S2 are confined
for illustration purpose in a parallelepiped of finite sizes. The dislocation is
located at the origin, runs indefinitely in the x, —direction and spreads in the

X,X; — plane in the form

A1 :gn sin KnXS' (2)

o R (2)

Figure 2 : Two elastic mediums (1) and (2) welded along a non-planar
sinusoidal surface and containing an interface sinusoidal
dislocation at the origin. The dislocation lies in the Ox,x, —plane

and runs indefinitely in the x, —direction
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When its Burgers vector 6, = (0,b,0)is in the x, —direction, the dislocation is
edge on average. Because b, is in the plane of location of the dislocation, this
is a glide-type edge dislocation. With the Burgers vector b, =(0,0,b) in the
X, —direction, the dislocation in Figure 2 is screw on average. This is the aim
of the present study to provide displacement ‘™ and stress (o)™ fields of

these types of interface dislocation. The solution methodology is that
of [10, 11]. The elastic fields (G™, (o)™ ) are assumed to be the difference

between two quantities (G™*, (&)™) and (G™", (&)™") :
GM = gmee _ gmw

(@)™ = ()™ = (@)™

3)

The former with oocorresponds to the fields of a sinusoidal dislocation (edge
or screw) in an infinitely extended homogeneous solid (m); the latter with W
satisfies the equations of equilibrium and is constructed in such a way that :

(@) (™, (&)™) are continuous at the crossing of the interface, implying that

AG”(Py) =T@” —GO= =g@" — g = AT (P,)
(A0)"(Ps) = (0)?” = (0)P” = (0)?" (@)™ =(a0)" (Fy); (4)

(b) (G™, (o)™ tends to (G™~, (¢)™=) when one moves far away from the
interface in the x, —direction. This means that

l](m)W

()™ -0

-0

()

when |x,| = 0. (0™, (c)™~) may be taken from [5, 6]; they are given to
linear expressions with respect to & . The associated terms (G©(™* | ()™= of

zero order correspond to the fields of a straight dislocation and second terms
(G™™= (o)»™=) are proportional to either A or its spatial derivative
oA, I x,. Hence we have

AG™(Py) = AGO" + AT

: (6)
(A0)"(Ry) = (A0)” + (Ac)™

on the interface point P (x, x, =&, sin x, X5, X;) ; Appendix A below gives the
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complete list, component by component, for the sinusoidal screw dislocation;
the corresponding values for the glide-type sinusoidal edge dislocation have
been given in [10, 11]. (¢™", (o)™") are obtained with the help of Galerkin
vectors; these are available for the edge dislocation (see [10, 11]). For the screw
dislocation, we arrive at Galerkin vectors V with only one non-zero x, —

component, arranged in the form
Va(%) = & (K)e™* + By (K)x,e"” ()

under the condition k? = k2 + k2 + k2 =0 that ensures the biharmonicity of V,
. For v, to cancel far from the interface, we write

k, =ks™ = (D)™ iyki +k; (8)

with m=1 when x,>¢& sink,x,(half-space 1) and m=2 when
X, < &, sin x, X, (half-space 2). We use the notations

K™ =k, k™ k), &™ =g (K™), A" = B(K™);
hence for half-space 1 (x, > &, sinx, x;), solid (1)

V, (%) =V (X) = @l + fOx,e""

and for half-space 2 (x, < &, sin x,x,), solid (2)

V, (%) =V (%) = e + BPx,e

The elastic fields corresponding to V, (7) may be first calculated; then, more
general forms ™" and (o)™ are constructed from the previous ones by
superposition over k, and k, ; we may write

GV — GMA 4 (mB _ [j(mA+B

(G)(m)V — (O_)(m)A + (O_)(m)B — (U)(m)A+B

(9)

where terms with A and B refer to @, and g, in (7) respectively. For ™" and
(o)™ to conform with G™= and (c)™=, the summation over k, is
continuous and that over Kk, is discrete. k, takes three values : — «,, 0, «,. The
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fields corresponding to k, =0 are denoted G™™" and (&)™ and terms
associated with k, = —x, and x, are merged to form expressions denoted by
g™ and (o)™ ; this is made possible by requiring that

iV (x,) =—ai"(-x,), B (x,) =—B" (—x,) .- (10)
In (20), &{™ (x,) stands for az(k k™, x,). We write

GV — GOmV 4 GAmv

(O-)(m)v _ (O_)(O)(m)v 4 (O')A‘(m)v (12)

introducing subsequently the notation G©M™A | A MA = GOXmME = GAME gnd
even for the stress. G and (o)™ are x, —independent; G*™" and
(o)™ are proportional to the sinusoid A (x,) or to its spatial derivative
OA, | ox,. Here also, for points P,on the interface, AG" and (Ac)' are
expanded up to terms of first order with respect to x, = & in a similar manner
as in (A.2) (see Appendix A) for AG” and (Ac)”. Requiring AGY = AG™ and
(Ao)Y =(Ao)” lead to the following equations, writing first the conditions
corresponding to k, =0 (i.e. Au{” = Au{”” and Ac{? = Ac{"").

AU = AUl =

() n O

BT BTy (@)
C, G

A =AcP”and Ac)Y = AcD” =

A=) B2 +@-w)BP =0 (b)

Q-1)BP - @-wBY =@ -Q) ) © @
1

where C, =bu_/2z(1-v,.), Q, =i(C,—C)/4, Q, =i(v,C, —v,C,)/ 4;

son(k,) =k, /|k|; 4, and v, are shear modulus and Poisson's ratio. In

equations (12 a to c) above, g™ stands for g, (k,,k{™, k, =0). Other elastic

field components are zero. The conditions corresponding to Au*" = Au/** and

Ao = Ao are now listed as :
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AU = AuP =

a;) @’ _bC, K,

Ha H 87 (k2 + K, )3/2
~(2)

~0) 7@ 7O
a a
1/k2+1c( 88 j+ ')

H> Hy 22 H

Auy = Aup* = (b) above and
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bC., ¢S,

K,

—(2) — (@) (2) (1)
o 177
1/k12+1c§( 3 _ 3 J+2( 3+ 13 J:—

> 2 22 H

AU = Auf

87 K+«

2

e ”}W (B

H> H H>
_ bC‘,é:nK2

(l_ Vl):B(l) J

t

Ky

87

( +

)3/2

—(2) —(1) ()
K2 k2 + Kj(“?' + % ]+ s [12 + 40— v,)(K? + &7)]
y7)

22 H

2
(1)

AO'S“V =Aoy)” =

las? a2 0 )

[K + 41—k +&2)]=0

iné:nkl(klz + 2K§)

(k2+K‘

K2JKZ + &2 (@? +a® )+ [(L+ 2v,)K? + 2v,x2] B
- [(1+ 2V1)k1 + 2V1 ]ﬂ(l)

AV _ 0
Ao,y =Ao,y” =

S+ 2 (@® —a®)+ 20-v,) B? +2(2 -

VOB =

S+ 12 (@® + @)+ (3-2v,) B? — (3-21) AP =

Aol =Acy” =

2)3/2
n

1(2Q, —Qy)Snk,

2 2
K =+«

K2 (@® —a®)+ 2.k + k2 (2-v,) BP +(2—v) BP)
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iQ,& k, (2K + k2 .
_IQb(Q;Z ( );_ZK ) (J)
K22+ 12 (@@ + @)+ [(5—2v,)k2 + 22— v,)k?1 B2
—[(6-2w)K: +2(2-v)k 1B = (k)

Aol =Ach” =

2 2 _ (1) 5D | (1) _i& Q. - 2Qb)k12 +(Q, —Qb)’ff]
i+ 12 (@ )+2(5, )= (T 0

[k + ( 2 +a‘1))+ﬁ‘2) B =0 (m)
Aol =Ac” =

K2(@? —a®)+ 2k + &2 (1-,) B? + 1—v) B?)
g [Quek? +(Q, — QK + x2)?]
- 2 /2 (n)
ky(k? + 2]
K2k + 2 (@® + @)+ [(B—2v,)x2 + 2(1—v,)k2] B®
—[B-2v)x? +2(1- )k 188 = (0)

Ao,y = Ao,y =(0) above and

k2 k2 + 12 (@® —a®)+ 202 —v,)K? + (L—v,)k? 18P
i£k[(Q, — QK +(Q. —2Q)x;]

2 2
K+«

+2(2-v)ry + L=k 157 = (p) (13)

Next, we are concerned with satisfying boundary conditions : (12) leads to the
displacement and stress fields due to an interface straight screw dislocation

(b, =(0,0,b)) parallel to the x, —direction at the origin; the interface is the
Ox; X, —plane. (13) provides the complementary terms (to first order in &,) in
the elastic fields of an interfacial sinusoidal screw dislocation.

11 - CALCULATION RESULTS

I11-1. Displacement and stress fields of an interface glide-type sinusoidal
edge dislocation

When & is small, the elastic fields (displacement G™ and stress (¢)™ ) at an
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arbitrary position X = (x,, X,, X,) may be expressed (to linear terms in & ) as

G™ =GO 4 gAm

(G)(m) — (O.)(O)(m) + (O_)/-\](m) ! (14)

with m=1 and 2 for medium S1 and S2, respectively. G™ and (&)™ are
of zero order, independent of x,, and correspond to the elastic fields of a
straight edge dislocation lying on the planar Ox x, —interface. These are given
under continuity requirement of the fields on crossing the interface [10, 11].
a*™ and (o)™™ are oscillating fields proportional to either A or its spatial
derivative A, / ox, with respect to x,, written [11] in the forms

GAM = gAme _ gAmw

. (15)
(G)Aw(m) — (U)/\mn)OO _ (O.)Aq(m)W
Here, expressions with ooare associated with a sinusoidal edge dislocation in
an infinitely extended homogeneous medium (m) with the equal elastic
constants (see oscillating fields given in [5, 6, 12]); second terms with W read

AW p AMGAMY | A MG AMY
u u,

=1, +17; +17; +174
(@A ) 4N PG sy (16

Aq(m)u A (m)V Aq(m)u A, (m)V

ahm™voand (o)AMY are given in [11]; »4(™ are real determined essentially

atod atod atod
by continuity conditions of the fields G*™ and (&)™ on the interface. These
lead to a number of equations denoted by e’ (see relation (43) in [11]). We

follow the treatment in [11] (same definitions and notations) but introduce
some changes that follow; in this section, we use the notation Egn (N), N
integer, to designate an equation (N) in [11] :

(i) Retaining only terms proportional to 1/x,, u/>™ is written as

1

7 06,0, = e - ()

Wwere
et = L lC (L-2v,) + 7™ 22 1AM (1A 2y,)2iQ,

m

+17," An (M) 2||:Za(m) + (_1)m712pm (1_ 2Vm)(blc - bZC + b3c ):|
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+ 7™ 2i[al™ + 8l + ()™ 41— 2v, )b ™ |}.

e, is constant with m=1 and 2. e;** is used in place of e/ in Eqgn (43). We

stress that e," is proportional to the modified Bessel function K[« |x[Jonly

that has a singularity of the type 1/x, but additional terms with 1/x, do exist

in us»™. Taking into account all the singularity terms with 1/x, leads to e/

above. (ii) ey in Egn (43) is proportional to the modified Bessel function

Ko[x,|x/1only that has a singularity of the type In|x|; however, there are other
A

terms with In|x,| in o/y™. Collecting all the terms with In|x,| and setting the
coefficient of In|x,| constant with m corresponds to es}" constant with m with

en' =—v, C, +n™2a™ 4+ p~™()"Q, (2+ v, — p,,)

™28l 4+ G 1 (<D™ 2y, p. (b, —by)]
™ [aé?) +(-)"2v. b™ ] (18)

e/ is at present considered in place of e’y . (iii) We add a new equation e”
corresponding to the condition that oy ™ (x,,0, x,) is constant with m=1 and 2.
Restricting ourselves to all the terms with 1/ x, only, we obtain

m oA e”
o (4,0,36) = S0 (19)
3 1

with
& =v,Cp — "™ 28 + 7> ™ (-)"2iQ,
3
— 77:” (m 2||:Z ai(cm) + (_1)m mevm (blc - bZC + b3° ):|
i=1

— ™ 2i[al™ +al™ + (—1)"4v, b ™ |.
We stress that all the others e/ in Eqn (43) are unchanged. (iv) In the resolution

procedure [11], it is required to choose four equations (Ei), i=1 to 4,
corresponding to four independent equations ef" (1)=ejAn (2). A choice

corresponds to Eqn (51); (E1) and (E2), there, are at present replaced by (E1)*
and (E2)* below.

(ED*: " (2) +e73"(2) =& () +e73" ()
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(E2)*: € *(2) =€ *(1) (20)

(E3) and (E4) are unchanged. The identifications corresponding to (E1)* and
(E2)*, to be used in place of (E1) and (E2) in Eqgn (52), are :

b, =2i(a® +2v,6®)D
a, =-2i(a? +2v,0?)D,,
a,=—-1Q,(v, —v)B, — Zi(ai(f) +@- G)aéi) +2wy, [blc —2b,. + 1+ )b, ]kb
~2i(a®? +2v,6 @)D, +iQ, (v, —1,),
a;=—1Q,(v, —v,)B, — 2i(31(c2) +(@1- 49)83(? +2nv, [blc —2b,. + 1+ )b, ]X:c
—2i(a® +2v,0 @)D, —2i(a® + (1—0)al — 2vv, [0, —2b,, + L+ )b, ),

a, = —2i(a1‘§’ + 2Vzt_)(z) )Dd - 2i(ai(flj) — 21/15(1));

b2 =, C, —,C, + 2a? A+ 2i(a® +a? + 4v,b @)D
,=—2aPA —2i(a? +a? + 41,0 @)D, —2a?,

=23 A +2iQ,B, - 2uz[a<2> +2v, (-1, E,
- 2|(a1(§) +a? +4v,b?)D, - 2iQ,,
3

= 2aPA +2iQ,B, —2i> [a® + 21y, (-1 b, |,

s=1
2|(a1(2) +al +4v,0® )D + 2|Z[a(l) +2v v, (— 1)Sbsc],

s =28 A, — 2i(a + 82 + 4v,5® D, + 2i(ah + a8 — 5. (21)

With changes (i) to (i4) above, the resolution methodology [11] can be
followed, step by step, with no more modifications in the various listed
relations there ( i.e. Egn (43) to Eqgn (56) included, and in addition, all the
expressions in the associated Appendix). Again, we stress that the singularity
term in o7 ™(x,,0,%,) is given by (19) above with e;** and not Eqn (57) with
el . The solutions 7™ and 7™ (m=1 and 2) have been listed in Eqn (53)
to Eqgn (55). Using the two first equations in Eqn (47), we can write

77/%(1) a33(a24b1 a14b)+[a33(a14a22 a24a12) a32(314a23 a24a13)]77A“(1)
: CHCHEREEER
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o = 8(a,0, —3y,) + [a33(a'11a22 —,31,) —8gy(8y,355 — ‘3121‘3'13)]77;h v . (22)
ass(ai4a21 - a24a11)

Ut

7@ and 5@ are obtained using Eqn (44):

> = A+ At + A0+ At O+ A,
7® =D+ Dy + Dyt + D + Dy (23)

In summary, all the 2 (m=1 and 2) have been given, permitting one to

express the oscillating parts (15) of the elastic fields ™ and (o)™ (14). We
stress that in our previous work [11], we have imposed coefficients of modified
Bessel functions K,[«,|x[land K;[x,|x[] constant with m in the elastic fields

u™(x,,0,%,), o™ (x,0,x) and o1 ™(x,,0,x,) whilst the present study
focuses on functions In|x,| and 1/x,, respectively. Both procedures are self-
consistent and should yield the equal 775" .

I11-2. Displacement and stress fields of an interface sinusoidal screw
dislocation

I11-2-1. Displacement and stress fields due to an interface straight screw
dislocation

Two distinct values for g™ are extracted from (12); these are :

—m C son(k —m
(a) ﬂs( ):[51m__25 J el 1)5 S(a)

C o k12
am) _ (_qymd Q,—Q.) Sgn(kl):—(m) 24
o) fi7 =y Q= g @

where &, is the Kronecker delta. g is obtained using (12 a) and continuity

requirement for G™ at the crossing of the interface at x,=0. g{™is
obtained from (12 b and c¢) associated with the stresses. None of these values

satisfies the entire (12). The associated elastic fields denoted G .. and

aandb
(0)(m)v

(0)amap are displayed below. A superposition of these partial fields will
provide the complete form of the solution. We have at position X = (x;, X,, X;)
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©mV ©mV 1 m s (m . _
5Jau3a + 5jbu3b = ﬂ_(5ja (1) Va( '+ 5Jb 2i(Q;, - Qb))tan ' |Xi
2

m

(0)(m)v (0)(m)v (

0a023a T0j,0,3 5java(m) +36j (-D"2i(Q, —Qb))r—xﬁ )

(0)(m)v (0)(m)V

m m H X
0a01:a 103,013 :(5ja(_1) Va( )+5jb2|(Qc_Qb){|r_§|+ﬂ-5A(X2)5(X1)j (25)

where V™ = 4i(1-v, )(6,, —5,,C,/C,),j =aand band §(x) is the Dirac delta
function; here s, has the following definition : 6,(x,) =0 when x, # 0 and
O,(%,) =1when x, =0; r*> =xZ +x.. The other elastic fields are zero. We

define the elastic fields G‘™™ (x) and (o)™ (X) of an interface straight screw
dislocation as

G OM — GOme _ FOXmw

(O.)(O)(m) — (O.)(O)(m)co _ (0)(0)(m)W (26)
with
U(O)(m)W — n;m)lja(IO)(m)V + ném)uéo)(m)v

(@)™ =P (@)™ 4 @)™ @)

Again 0™~ and ()™= are due to a straight screw b,, = (0,0,b) parallel to
the X, —direction at the origin in an infinite medium (see [5, 6] for example);
gl and (o)XY are given in (25). n™ ,, are real, to be determined by
the condition that the elastic fields satisfy the following relations :
e GO (x)and (o)™ (X) are continuous when crossing the Oxx, —
plane.

. fdué"’(’“) =b for a closed contour T"in XX, encircling the dislocation.
r

o  GO™Y vanish far from the interface (i.e. when |x,| —o0).

The last condition is fulfilled because all the Gy (25) vanish when |x,| — o

aandb

. Also (6)™= and (o)®™Y vanish at infinity. Under such conditions,

aand b

GOM(x)and (o)™ (X) do correspond to an interface straight screw

dislocation. Next, we express the quantities involved in the above mentioned
requirements and proceed to satisfy these.
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O _ ;02 oxm _
U, ™ =u; " and fdu3 =b =

r
(7™ D™V 4 ™ 2i(Q, — Q) ) a4 =6
Ul(g)(l) — Gl(g)(Z) .
7™ ()" ™ + 7™M 20(Q, -Q,) =,
0.5(3))(1) — O.ég)(Z) —

D, — ™™ + ™ (-)"*2i(Q, - Q,) =&, (28)

where D, =bu, /27 =C_(1-v,); all e are constant with m=1 and 2. Only
expressions interconnecting the »{™ ., may be derived from (28). But only one

aand b

expression leaves unchanged elastic fields G‘™ and (o)™ by inverting the
elastic constants. This is written as

n(m) =DV (m ném)Zi(Q —Q)= (1401 + 14,6,,,)(D, — D))
M+ L

,m=land2. (29)

It may be obtained using e, ., ,(28) in the form

D, + (=)™ e (M) =5(M) ;

then, taking m=2 and introducing e, .., ,(1) (using (28)) in place of ¢, ., 4(2),

we obtain (29) for m=1. The case m=2 in (29) is obtained in a similar manner.
With (29), the elastic fields are :

ulm (%) = D aniXe D=0y %

2r X Mt |X2|
m 7o b
o (5) - Dt %,

”(/Jl + /Jz) re’
o™ (%) = DAt ey 5 ) £n(BL=D0) sy, (30)
72'(/”1 + /Jz) r ot

These are in complete agreement with previous works (see [13] and references
therein). Other elastic field components are zero.

111-2-2. Elastic fields of an interface sinusoidal screw dislocation

Five values for (™ (x,), ™ (x.)) are extracted from (13); these are

P.N.B. ANONGBA



39 Rev. Ivoir. Sci. Technol., 28 (2016) 24 - 59

—(m én (;n) k - m m m
a) a™ = ;1 (2 L _=gh™, B™ 0= ghm,
K, Jrlcn)3
b) a(m) _ énsl(l:r)n)k 4'_Vm _3pm _ 2(1_pm) EO{_An(m),
’ k12 + Krf k12 + Q1er$ k12 + Krf ®
1 1 —
2m _ g p(m _ BAm).
Iy K - = ;
,3 5 1b 1(k12 +leK§ k2+K2J 3b

) @™ -= gs(m)(@ v)<1+o.)Vk2+" 22— vy)%,
1 kl\/k12+1<§

n

2
2k, KoKy — =A(m)
- 2 2 + ( 2 2)3/2 = a3C
\/kl +x, K +x;

2
Bs(m) _ gnrlc (1 Q — ZK ]E 33'2” independent of m;
Kn

kl
(m) 2(m) (m)
d) am — EaSia K (m) KnSyq K S4d =ghm
3 T [, > )8/2 | Y2d k2 2 K 7 | = X
(kl -i-K'n)3 1 T omK, 1 _rmKn

o = Sk (S SOy
k12 + K kl kl + Ky
n(m m 1 2 m
B =g >k1[ P J B ™ (31)
where
SO =(-)",bC, 187, C,=[1-v) -1(1-v,)] Q=Q/Q =1/Q,
r-m :Vm/(l_zvm)’ pm :Vl5m2+v25ml’ Sm :pm/(l_zpm)i

Q, =[A-v)A-2v,) + @-v,)1-2v)]/ 4d—v,))A-v,);
s =(-1)"*C,D, /8(2-v,-v,), K" =C,C,, /16(1-C,);
s =(-)"iQ, /2, 1, =—iQ,/4;

s™ = (-1)"iQ, /2,

st =-2Q, +2[p, —v, —2v. (1-2p,)]J[(1-2v,)A-2p,),
M = (s, +Q)/(1 2p,), s =(r. +Q)(5 4v )I(1-2v,),
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r-1(dm) = IQC/ 2(1_ 2Vm)(1+ rm) ;

st = (-)"iQ,/ 8(Ll-v,)1-p,), (™ =i(Q, -Q,)/ 41-v,),
Sé?) = Qr (_ Pm— 3Vm + 4Vmpm)_ 4+ 5,Dm + 7Vm —8Vm,0m )
Sé;n) = (Qr _1)(8 - 7pm - 5Vm + 4Vmpm)' (32)

None of these couples satisfies the entire conditions (13). For each couple, we
give in Appendix B the associated oscillating elastic fields
Y = ghMA L GhMB and (g)*™Y = (g)*™* 4 (o) ™® defined in (9).
A superposition of these partial fields will provide the complete form of
solution (to first order in £, ). The elastic fields G™(X) and (o)™ (X) of an

interface sinusoidal screw dislocation may be written as

G — GOm 4 GAm
()™ = ()™ 4 ()M ; (33)

G and (o)™ (30) correspond to the fields of a straight screw dislocation
lying on a planar interface; G*™ and (o)*™ are oscillating expressions
proportional to either the sinusoid A, (x,) or its spatial derivative oA, /ox,in
the forms

UA‘(m) — UA‘(m)OO _ U&(m)W

; (34)
(G)N(m) — (U)A‘(m)oO _ (O.)Aq(m)W
with
g (mw — Zn_An(m)UAn(m)V
j=ato eJ !
(O.)An(m)W — anAn(m) (G)?n(m)V ) (35)

j=atoe

aMMYoand (o) are given in Appendix B (for G* ™~ and (o)*™~, see

atoe atoe

[5, 6]) ; ™ are real to be determined by the requirement that the elastic

0 e

fields be continuous when crossing the interface. It is sufficient to write this
condition for points on the average interface plane. Before displaying the
corresponding equations, we stress what follows.

e Both u™™(x,0,x)and o,3™(x,0,x,)contain two terms with
singularities In|x| and 1/x’; the associated coefficients (e/y and e,y )
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and (e/y and e} ), respectively, have been taken constant.

o u™(x,0,%), oa™(x,0,x)and o™ (x,0,%;) are bounded
functions. Under such conditions, we have considered their linear forms
with respect to x, and posed the terms proportional to X, constant with
m=1 and 2.

e o™ (x,0,x)and os™(x,0,%;) have terms with singularities 1/,
and those of &%l,/d|x 2|8x15(2/x12 + K Inzcn|x1|)/x1; the associated
coefficients (e;r and e/r) and (efy and e2 ), respectively, have been
set constant.

o u™(x,0,x)and o™ (x,0,%,) contain terms with the singularity

1/x, only. The associated coefficients e;" and e/> are taken constant.

We may write :
ulAﬂ(l) (%,0,%,) :UlA"(Z) (%.,0,%) =

1 ]G A-2v,) o Sl(a) o™ Sl(a) L Ms™ a2y Y
U 4 2 2

Ap (M) a(m) o (m) Ar(m)a(Ma(m) ([ — aA
4" Sy Soq —Me Sie "Sze }=e11a

n?“(m)ﬂ S [2-va)Q —va]=e;

m

u 2An ®

e S 2o (sl p) - o v, -3,

m

(m) (m)
m m m m S S m ~
1 )+ 7 >[< D)"s {s( o }rﬁ, )(1—Qr)J

m

Ay (2)

=Uu, =

e + P - Y=ot

us® —yh® o

L b, 12— ™24y, L+ Q)]+ ™ ()AL v, )Lt 1, D

m

+ ™ ()" A1 — v, )R = el
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A _ A2
01y =0y =
C (m) Sl(m) A, (M) Sl(m) (m)a(m)
- _ﬂaAn 2 +1," : +770An Sic [1_Vm(1_Qr)]

4 2 2
i O[S + (D" 2v, (@ )RS |- s + ()27 = et

nE TSP —2Q + vy =6l

A0 Ay (2)

Oy =03 =
C.(1-2v, s{m s{m
Eallo B S pa Se gL 20-v,) +Q]

— s + (-1 20— v, ) A+ 1) |
OS2 = e

51 1
7" 2-v)Q — v =k

Ay (D) Ay (2)

O3 =033 =

Co | A ®gm | A ymip 314 r )

2
(m) m-1 (m) _ .
+0 ™ (D" 22— v, )V =g ;
A _ A2
O, =0y =

m m-. S(m) m m m
77:”( )(_1) 117a+77bAn( )((_1) sl(b)[z(l_pm)_le(4_Vm _3pm)]
i A=) )+ (D)™ s[5 s 4+ 50 [+ kP @ ), -1+G,))

(Sl s | an )=et

A _ A2
O13 =033 =

C m S(;n) m m m m m m-—. m
™ 2 gD OSOSD () A )
— @ [sOs 4+ ()2 v, )0+ )A- 1, — QIR = ey

D m m m m m
— =4 MsMQ, -1 + 75 ™ (-D)" 2L - v, )L+ 1 )R

4 c
(m) m (m) _ .
+n ™ ()" 20— v, )Y =6 ;
A _ A2
Oy =0y =
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(m)
7™ ()" 57 (s e o) - 4= v, - 3p,)]
Fih— 9, —20-v,)1- 2,9, )

Ay (M) mem| «m _ Sia Sty (m) ~
+175" | (FD)7s” | S5 _K"'F +hy (1-Q))
m

m

()Pl - s [+ 2)=ef . (36)

All e (m) are constant with m=1 and 2 (i.e. &’ (1) =&/ (2) ).We can see that
es =—ely =—u ey . There are twelve equations in (36) with ten unknowns

n™ A solution can be found with ten independent equations. A

methodology of the solution may be [11] : (i) express the 7>® as a function

of the > giving five relations, (ii) report these relations in five independent
equations in (36); we have then a linear system of five equations with
unknowns 7@ that can be resolved by the usual classical method with

determinants. The result is five expressions linking the 7>® with the elastic

constants of the mediums m=1 and 2. (iii) Come back to the 7*® relations to
find their respective values as a function of the elastic constants. Here however,
we shall proceed differently by first calculating values of a number of e*

including those associated with the singularity 1/, in the stress fields. When
a crack is represented by a continuous distribution of infinitesimal dislocations,
stress terms that have a singularity 1/ x, contribute a non-zero value to the crack
extension force. We have, using (36),

VoCn/ 2+ (<1201 2v, )| ™ W+ Q)
Q)Y +nt PR [=ely vely —ef =EN . (37)

Equationse," (1) =es* (2), e =¢er(2), EM@)=E*(2) and
e (1) =esy (2) are four relations that provide the values of unknowns 7™
and 7™ (@L+r ) +75™E™ ‘m=1and 2, in the forms :

le

ey = s[(2-v,)Q; — Vi)

1
= 3(I' - 1)(1/2 _ Vl) {(VZCZ - Vlcl)[(l— V2)(2 - Vl) -(1- Vl)(z _ VZ)F]
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+(C, —C)lL-v,)A-2v) - T(A-v){A-2w,)]},

("4 ™ @+ 0 IED + 72 | =

(2-p,)(v,C, —1C) +(1-2p,)(C, -C)) +2(1+Q, )n%(m)sl(m) (38)
3(v, —w) o

where ' = g, / 11, We also have (see (36))
7™M (Q, ~1) + (<1)" 20— v, ) 7™ L+ £ )r + AR | = 4 e~y (39)

(39) with m=1 and 2 is a system of two equations with unknowns e/; and e
that can be solved with the help of the second of (38). A direct inspection of
various e™ in (36) shows that these can be given values with the help of (38).

Hence, we display following expressions (e is given in (38)) :

A 1 3 B N B
€11 _6(;12—;11)(‘/2—1/1){(‘/101 Vzcz)[(l v)(2-v,)—([1-v,)(2 Vl)]

+(C,—C)[A- )AL -2v,) - @-v,)A-2v) ]},

e =—ed/2,
e =£+ (1_V1)(1_V2)(V1C1_V2C2)
P dr o (1-v,) - 2v) - p(L-v)(A-2v,)
(-v)A-2v,)-(1-v,)1-2v)) A,
mA=v,)L-2v,) — p,(L—v)(A-2v,) 2
ek = viC(A—v)A-2v,)I" —v,C,(A-v,)1-2v,)
T rA-w)-2v,) - A-v,)1-2v)]
v,1-2v,)[ —v,(1-2v,) A,
2r@-v)a-2v,) - 1-v,)@-2v)] "
o _TC=C, TG, —v,C)[1-1)(2-v,) ~1-v,)(2-v)]
C T 2 -D[rA-v)(A-2v,) - A-v,) - 2v,)]
vil-2v,)I —v,(1-2v,) oA
Ara-v)a-2v,) - 1-v,)1-2v)] >

(40)

These expressions are unchanged by inverting the elastic constants. At this
stage, only 7™ is given a value (38). To proceed further, we introduce two

parameters
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A(m) _ A (m)
Mora " =T

A(m) _ _A(m)
Moa =Tk

(m)
+n ",

—, " (41)

and search for these two parameters and 7™ and 7™, m=1and 2; we have
eight unknowns and look for eight independent equations. Because the value
of e/> is known (40), its expressions with the associated 7™ (36) provide
two equations; two additional relations are given by the second of (38) with
™ @+ )l + A ™™ These first four equations can be written in the form

(m),, A, (M) (m) A (M) _ |(m)
Cii'mg™ " G, =b™,

(m) (m) (m) (m) _ R(m)

C 77?] +C3, 77eA1 =D, (42)
where

(m) _ (m) o (m) (m) _ (m) o (m)

Cli” =—S19'Sq s Cp” =S Sz

{m) C (1-2
(M) _ o A(m) St A, A-2vy) A mem
bl =Th-a ; +tumell S 4 = =7 Slc (1_2Vm)’

ciy) = L+ )R, o) =",
p™ _ )" [ 2= pn)(,C, —vC) +(1-2p,)(C, -C)
2 4 3(v,—v)
+201+ Q) ™s).

We obtain
(M) (M) (M) (m)
i _ et b™ —cy'h
e (m) ~(m) (m)~(m) *
C1'Cry” =G Gy

(M)} (m) (M) (m)
A(m) _ Co —Cp bz

T A(m)A(m) (m)~(m) *
C,'Cry” —Cp Cy

(43)

Relations (43) give 7;>™ and ™, m=1 and 2, as a function of 7>™ only
through b™ . It remains to evaluate 7>™ and 7™ with four independent
equations. We may use : er(D)=er(2), er@)=er(2),
e +er () =er(2)+e(2) and er(@)=e;r(2). We then have four
independent equations with unknown 7™ that can be resolved by the usual

classical method with determinants (see [11] for analogous analysis). In
summary, the elastic fields (0™ and (o)™ : (33)) of an interfacial sinusoidal
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screw dislocation (Figure 2) to linear order in & , are the sum of two terms:
the first ones correspond to the elastic fields (G™ and (o)™ : (30))
produced by an interface straight screw dislocation; second terms are
oscillating expressions (G*™ , (o)*™ : (34)), proportional to the perturbation
A, (%) =&, sin x, X, or its partial derivative 6A, / Ox,. These latter expressions
can be written as linear combinations (35) of partial elastic fields G>™ (i= a
to e) (see Appendix B). The associated proportionality coefficients 7™
fulfilled continuity requirements (36) of the elastic (G‘™, ()™ on crossing
the sinusoidal interface. These can be solved to provide values for the 7/*™
(see (38) and (43) with the associated text). A number of e* values have been

calculated (40) that include the coefficients of the various stress terms with the
singularity 1/x,. We shall make use of certain terms in the crack analysis to
come (part 11 of this study).

IV - DISCUSSION AND CONCLUDING REMARKS

In the present study, the displacement and stress fields of sinusoidal
dislocations (glide-type edge and screw) lying, at the origin, on a non-planar
interface S with the form of a corrugated sheet (Figure 2), have been

determined. Stress terms with the singularity 1/x, have been emphasized in
view of crack analyses. As an illustration, consider the stress oy’ (case of
sinusoidal screw dislocation only): on the interface x, = A, is assumed small.
We can take the linear form of the stress up to term with Xx,, i.e.

005 (%,0.%,) |
5
OX

2

ol (X, Xy, %) = o3P (x,,0, X;) +

We have
7 (%,0, %) = o™ (%,,0, %) + oy ™ (%,,0, X5) .

The first term o™ (30) is zero. Restricting ourselves to stress terms with
1/x, only, it is easy to see that

o, del »

o3 " (%,0,%) = - o x,
3
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Ay ()

The value of e;" is known (40) with no reference to the »/*™ . This result is

sufficient in the analysis of a number of special crack fronts when o’ is
involved (see [5, 6] for the case of homogeneous solids). But in general, it will
be necessary to write down explicitly the value of all the 7™ in order to have
the stress singularities. This study also reveals the presence of a term with Dirac
delta function 5(x)in o9™ (30) on the interface at x, =0. The associated
coefficient is proportional to shear modulus z, ; hence it changes with m=1
and 2. No alternative has been found to this value. Assume now that the
interface with the associated dislocation have a more general form f (1) in the
X,X, —plane. Writing B, =& sinx, X, +J, CoSk, X, and assuming & small, the
elastic fields G™ and (o)™ in the bi-material are simply (to linear terms in
the amplitudes)

Z(m) _ GOm , =(m
a™ =a™ +am,

(@)™ = (@)™ + (o) (45)
where

Uém) — ZUBn(m) 1

@ =T (o)™, (45)

Here, G{%™and (o)™ are the fields of an interface straight dislocation,
displaced by x, =hfrom the origin. In the various elastic field expressions
obtained with sinusoidal dislocations with shape A, we just have to replace
A with B, and add the symbol X in front of the oscillating elastic fields; in

addition, x, has to be replaced by x,—h. We shall proceed further by
providing expressions for the elastic fields of interface climb-type edge
sinusoidal dislocation (5" =(b,0,0)), crack tip stresses and crack extension
force. These will be the subject of part 11 of the work.
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APPENDIX A : DIFFERENCE OF THE VALUES OF ™~ AND (o)™~
(SCREW) WHEN CROSSING THE INTERFACE

Our purpose here is to write down the differences AG” and (Ac)” (4) on
crossing the interface at arbitrary point P, (x;, x, =&, sin x, X, X;) . We use the
notation x, =& (&=& sink,x, small) and take the MacLaurin series
expansions of the elastic fields up to terms of first order with respect to & ; this
means that

o OAG”
Au (Xl,X2=§,X3)=A (X1’O X3)+ ax (Xl’o X3)§

o(Ao)”

2

(Ao)" (X, X, =&, %) = (A0) ™ (%,,0, %3) + (%0, %3)& - (A1)
G™= and ()™= are taken from our previous works [5, 6]. We obtain (u, is
the i-component of vector U and o the ij-element of the stress matrix (o); i,
j=1t03)

AU (X, X, = &, %) = AU 07 + Au S
Aoy (%, %, = &£, %) =AcO” + Ao
as

Au®” =0,
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6A bC, 7 K’

Aup* = " dk,;
' OXy 87 7 (kf +K§)3/2 '
AUL* =0,
Au}” = OA, bC, j tk, e"dk &
%y 87 7 [k +x?
AuP” =0,
bC, 7 ik i
AU =2 4 1 e'adk, ;
3 nph 81 __[O(klz_'_,(ﬁ)?/z 1
AcO” =0,
" %) k, k2+21( ik x
A 1A1n _2Qb A1 I (2 /2 k“dkl;
k + K )3
AcD” =0,
o0 a k I X B
AGZZ 2(2Q Qb A1 J. \/ N thy 1dkli
K’

Acl)” =0,

oA, Tk (2kZ +x7) o g -
=2q, >[4 di;;

. (+KY2

AcO” =0,

_2| 8A1 IQbK +(Q 2Qb)(k2+K) Ik1X1dkl§;
\/k2+1c

Aalz

AcQ” =2i(Q,-Q,) j K Je"*dk.¢,

Aoty —2|AnIQ‘° ks + Q QK k) g g

(k4]
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Acfy” =2(Q,-Q,) jsgn(k ye*ridk,

where

C, =[l/1-v)-1/1-v,)], Q, =i(C,—C,)/4,
Q, =i(v,C, —»C)/4, C,=bu l27(1-v,);

son(k,) =k, /|k,|; 4, and v, are shear modulus and Poisson's ratio.

APPENDIX B : PARTIAL OSCILLATING ELASTIC FIELDS (SCREW)

The couple (a>™, ™) is obtained from (13 a, b, d and e ) associated with
the displacement. We have at position X =(x,,X,,%;) (G*™ =gh™",

(@™ =(@)2™):

U = 3, 4 )+ 5 A(ZKo[xnr]al + (i ah
0%,
+Kr? _é‘il-’_é‘iSi |1aJ’
X
o™ =%Knsf?)[<—5u%)M[K"”m(—éﬂ& allaj,
5 r 24
mv O " 2%, |K [x,r
A P T (—' oKl ]—Knnl}
3 r
m m oI,
JAgna( V= A x’s! >[ ( K21, — 2K, [k, r])+5,2( n" —le (B.1)
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Terms in brackets | | are operators actingon A, and I, separately; 1, is the
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value of IT, forz=1, r? = x* + xZ and subscripts i=1to 3and j=1and 2; K, [x]
is the nth-order modified Bessel function usually so denoted and &;is the
Kronecker delta. We stress that the various integrations (such as in 1, ,and II,)
performed in the present study are given for spatial positions satisfying the
condition (-1)"x,<0 (i.e. ()" '=sgn(x,)) with m=1 when
X, > & sin kX, (half-space 1) and m=2 when x, < &, sin «,x, (half-space 2).
However, this makes no difference in the elastic fields to first order in &, .

The pair (a>™, Bar™)is obtained using (13 b to e) associated with the
displacement. We have (using the similar notations)

Ui mA _ oA, Sl(tr)n) v +v,=2-2Q,(1-p,) oI,
B Xy, 1-Q, a|X2|

le (4 Vi~ 3pm) aHQm
1-Q, x|

+ 2(1_pm)Kr?|laJ’

(m)
r
ul/;\) Z(MB _ 8A1 b e XZ(H leH )’

aXS /um

ma  OA s™
armn ZOA S g 18)(1([4_Vm_3pm]n%—2[1—pm]r11),

8X3 /um
(m) 2
uzAb n(MB _ 8A1 r ( ) —1X2 a (Hl o )’
OXy [ 8x1 X0, | &

(m) v — 2
u:fb n(MA _ Ah Sib 2K§(,0m _1) alla +4 Vin 3pm 0 (Hl_HQm) ,
. OX, 1-Qp X0

(m)

Ay (M)B _ Aﬁb B

62
Usy
Hm

(I, -
x|

le);

8i1+( H"4l-v,)——

ama _ O, (m)i(anl vi+v,—2-2Q,(1-p,)

T8 T o 7 x| x| 1-Q,

oIl _
+ Qyp le (4 Vi 3pm) + 2(1 pm) laj ’
%, | 1-Q,
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O11h

A, (MA _

22b

A, (mB _ —

22b

A, (mA _
O33

A,(m)B _
O33

A, (M)A _
O1g

An(m)B _
Oy

An(mA _
O3

A,(mB __
O3

A (mA _
Oo3

A, (m)B _
o 23
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oA, 0 0
= 2r™ | kX, (I, - Q, I, )+ (-1)"2 —1I :
axa 1b axl (K 2( 1b ) ( ) V a| 2| Qi )]
8Aq m_ 0
4—yv —3p 1, —2[1-p 11, ),
Slb 8X16| 2|([ m pm] Qp [ pm] 1)
5'6\1 m O .
21, 1-Q X1, +(-1)"2(1- IT, - ;
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+ (—1)”*x2i(n1 ~I1, )}; (B.2)
x| &

_ J' e(—l)m /kf+zcn2xzeik1x1dkl = J' e—kaﬁ-xﬂxz\eiklxldkl _ 2Kn|X2| K,.
r

The couple (az>™, ™) is obtained using (13 j, k, n and 0) associated with
stresses. We obtain

AmA _ OA sy 1

Uy’ 8X3 P ((V _(2 4 )Q)

5| .

_2(1_ 2Vm)Kr?KO[Knr] - K:Ilaj |
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AL VIS
i Xy 1

mKn
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1

, Ol 9.
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" 8 rc m— a 8H .
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m
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ma O m 1 [ &%l ol
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3 2
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m 6X1 J
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3 2
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oM = —/%%fé”{(v ~-(2-v )Q) a| |
2

—2(1-2v )2 K, [x,r] - 1aj,

ol ——A\nc[<—1>m-l4a—v ) sqlarQt-2eim]
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The pair (™, B,;™)is calculated from (13 f to i ) associated with stresses.
We have

(m) (m) (m)
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m m m 2 m 2
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A (M)A _ A sy m1 O g(m _ S3g” | Sag
Upg (-1 [{ 2 +—— I,

OXg My, OX, 1+s, 1+,
(m) (m)
+ SSd H(,S )_ S4d H(,r |
1+s, "1+, "
oA, ™l o _ 0°
A, (m)B 1d m l
ugyme = Shhs L9 () (5 + QI + (- Q)IT,
2 X3 My (0% 0% | 2|( ) )
uAn(m)A — A\ﬂi 2K SA((Z]) _ Sé?)
¥ o 0% CL@A+T) (@+s,)
2 gm _ S st N Sig. _ sl Ol + sty O
"1 14s, lar, | (Q+s,)” dx|  @Q+r)? dlx,|
(m) 2
A (M)B My , O m-1 0
u.” = Xk, —+ (1) 41—V,
3d Ah _ 2 axl ( ) ( )6 a| 2|

X ((rm + 6r)H(—rm) + (1_6r)nl)’
(m) (m)
1Alnd(m)A GA] zsl(gn) 0 K Ség) _ SmSad S+ ImSaq >
OX, X, (1+s,)” @+r,)

(m) (m) (m) (m)
S(m) S3g + S4d _ SmS3d 81_I(fsm) + ImSaq al_I(frm)
o l4s, L4 | @+s,)? x| @+rn,)? o)X

_ oA, 0 ~ ~
n (M) (m) 2 2
1qd ° GXS 2r axl {X2|:(1+ rm) I0 + rmKn (rm + Qr)H(—I’m) K (1_ Qr)H1:|

FEYT 2 |(<r +QIM,, +@A-Q)I, )}

(m) (m)
A (M)A _ 5'0\1 (m) 5£2{S(m) S Sag }Ko

O
22 X, 28 “ 1+4s. 14T,

(m) (m)
_ Sa sy | sy ey
1+s, X% 1+r, ox)|

m a m
o™ = —a'j‘ 2 ){x2(1+r )— [I +x2(r, +Q, M, )]
3

P.N.B. ANONGBA



57 Rev. Ivoir. Sci. Technol., 28 (2016) 24 - 59
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The couple (az>™, g.>™)is obtained from (13 I, m, p and o) associated with
stresses. We have
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