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ABSTRACT 
 

This study's objective is to analyze the conditions of propagation of an 

oscillatory front crack along a non-planar interface, under mixed mode I + II + 

III loading. The crack model consists of a continuous distribution of three 

families of non-straight dislocations having the shape of the crack front: 

families 1 and 2 are edges (on average) and family 3 is screw. The associated 

Burgers vectors jb


(j= I, II, III) are directed along the applied tension and 

shears 2x , 1x  and 3x  directions, respectively. The dislocations are aligned along 

the 3x direction and spread in 32xx planes in a small oscillating form 

),( 31 xx  at an average elevation )( 1xh . In this part I of the study, the 

displacement and stress fields of dislocations with 
Ib


 and 
IIIb


 are given. 

Results are displayed, that make easily accessible stress terms with singularities 

1/1 x  and )( 1x (Dirac delta function), involved in the crack analysis to come 

(Part II of this work).  
 

Keywords : linear elasticity, interface dislocations, Galerkin vector, three-

dimensional biharmonic functions, Fourier forms, linear systems 

of equations. 

 

 

RÉSUMÉ 
 

Fissure d'interface non plane sous sollicitation extérieure arbitraire 

I. Dislocations vis et coins de type glissile  
 

La présente étude se fixe pour objectif d'analyser les conditions de propagation 

d'une fissure de front oscillatoire le long d'une interface non plane sous 

sollicitation en mode mixte I+II+III. Le modèle de fissure adopté, est une 
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distribution continue de trois familles de dislocations non rectilignes ayant la 

forme du front de fissure : les familles 1 et 2 sont des coins (en moyenne) et la 

famille 3 est vis. Les vecteurs de Burgers infinitésimaux associés jb


(j= I, II, III) 

sont suivant les directions 2x , 1x  and 3x , correspondant à la tension et aux 

cisaillements appliqués, respectivement. Les dislocations sont suivant la 

direction 3x  et s'étalent dans les plans 32xx  dans la forme ),( 31 xx  à la hauteur

)( 1xh . Dans cette partie I de l'étude, les champs de contrainte et de déplacement 

des dislocations de vecteurs de Burgers 
Ib


 et 
IIIb


 sont donnés. Les résultats 

sont présentés de façon à rendre facilement accessibles les termes de contrainte 

avec les singularités 1/1 x  et )( 1x (fonction delta de Dirac) impliquées dans 

l'analyse des fissures (partie II) à venir de notre travail.  

 

Mots-clés : élasticité linéaire, dislocations d'interface, Vecteur de Galerkin, 

fonctions biharmoniques à trois dimensions, expansions en séries 

de Fourier, systèmes d'équations linéaires. 

 

I - INTRODUCTION 
 

The main objective of this study is to analyze the conditions for the propagation 

of a crack, along a non-planar interface R of arbitrary shape, in a pair of two 

firmly welded different solids R1 and R2. This work is fundamental by the fact 

that most of the materials, used in practice, are composite materials that can 

deteriorate in service by the propagation of interface cracks. To a large crack 

under general applied loading, fluctuating about average fracture plane (e.g. 

31xOx of a Cartesian coordinate system
ix ) normal to the applied tension 

direction, the following description applies locally : 1x , average crack 

propagation direction in that plane; 
32xx , local plane of the crack front and 

3x

, average crack-front direction. Hence, we can define a simple model by 

specifying that the crack extends from ax 1
 to a, with a front lying in the 

32xx plane in a general form ),( 312 xxfx   and an average direction that runs 

indefinitely along
3x . This is the model of interface crack (Figure 1) that we 

shall adopt in the present study where R1 and R2 are confined for illustration 

purpose in a parallelepiped of finite sizes. Clearly, this is a model that applies 

to large cracks that have propagated over large distance and interfaces not far 

from the average fracture plane. 
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Figure 1 : Schematic illustration of the crack front in two elastic solids (1) 

and (2) welded along a non-planar wavy surface that contains an 

interface crack. The crack fronts lie in 32xx planes in the form f

(1); in this geometry, the system is subjected to mixed mode I+II+III 

loading with the applied tension in the 2x direction. The average 

fracture surface (dashed) is shown perpendicular to that direction 

 

Our method of analysis consists of representing the crack by a continuous array 

of infinitesimal dislocations having the same shape as the crack front. f can be 

expanded in the form of a Fourier series as  
 

  hhxxf
n

nnnn   33 cossin         (1) 

 

where n is a positive integer; h, 
n , 

n  and 
n  are real numbers that depend on 

position 1x  along the crack length. From the stress fields of the dislocations, 

the crack-tip stresses and crack extension force (per unit length of the crack 

front) can be evaluated. Such analyses, with variable complexity of the crack 

front, exist in the case of an infinitely extended isotropic medium ([1 to 7], 

among others). In the case of an interface crack, mode I loading causes shear 

stresses corresponding to mode II and vice versa (for example, see [8, 9]). It is 

mandatory to have the stress fields of three types of dislocation before 

undertaking an analysis of the conditions of non-planar interface crack motion. 

In the present part I of this study, the elastic fields of sinusoidal dislocations, 

edges and screws with Burgers vectors )0,,0( bbI 


 and ),0,0( bbIII 


 are 

described, with special attention to stress terms with singularities 1/1 x  and 

Dirac delta function )( 1x that come into play in crack analyses (calculation of 
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the crack extension force, for example). In what follows, the methodology for 

obtaining the dislocation elastic fields and associated calculation results are 

presented in Section 2 and 3, respectively. Discussion and concluding remarks 

form Section 4 where, in particular, the passage from the elastic fields of 

dislocations with a sinusoidal shape to those having the form f  is indicated. 

The second part II of the work will deal with the elastic fields of edges (climb-

type) with )0,0,(bbII 


, crack-tip stresses and crack extension force when the 

non-planar interface crack is loaded in mixed mode I+II+III.  

 

 

II - METHODOLOGY 
 

We consider a dislocation lying on a non-planar interface S having the form of 

a corrugated sheet that separates two firmly welded elastic solids S1 and S2 of 

infinite sizes (Figure 2). S is defined by the point ),sin,( 3321 xxxxP nnS 

and S1 and S2 occupy the regions 
32 sin xx nn  and

32 sin xx nn  , 

respectively. The situation is shown in Figure 2 where S1 and S2 are confined 

for illustration purpose in a parallelepiped of finite sizes. The dislocation is 

located at the origin, runs indefinitely in the 3x direction and spreads in the 

32xx plane in the form  

 

3sin xA nnn  .           (2) 

 

 
 

Figure 2 : Two elastic mediums (1) and (2) welded along a non-planar 

sinusoidal surface and containing an interface sinusoidal 

dislocation at the origin. The dislocation lies in the 32xOx plane 

and runs indefinitely in the 3x direction 
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When its Burgers vector )0,,0( bbI 


is in the 2x direction, the dislocation is 

edge on average. Because 
Ib


is in the plane of location of the dislocation, this 

is a glide-type edge dislocation. With the Burgers vector ),0,0( bbIII 


 in the

3x direction, the dislocation in Figure 2 is screw on average. This is the aim 

of the present study to provide displacement )(mu


 and stress )()( m  fields of 

these types of interface dislocation. The solution methodology is that                          

of [10, 11]. The elastic fields ( )(mu


, )()( m ) are assumed to be the difference 

between two quantities ( )(mu


, )()( m ) and ( Wmu )( , Wm)()( ) : 

 

Wmmm

Wmmm uuu

)()()(

)()()(

)()()(  





 

.          (3) 

 

The former with  corresponds to the fields of a sinusoidal dislocation (edge 

or screw) in an infinitely extended homogeneous solid (m); the latter with W 

satisfies the equations of equilibrium and is constructed in such a way that : 

(a) ( )(mu


, )()( m ) are continuous at the crossing of the interface, implying that  

 

)()( )1()2()1()2(

S

WWW

S PuuuuuPu


   

)()()()()()()()( )1()2()1()2(

S

WWW

S PP    ;     (4) 

 

(b) ( )(mu


, )()( m ) tends to ( )(mu


, )()( m ) when one moves far away from the 

interface in the 2x direction. This means that  

 

0)(

0

)(

)(





Wm

Wmu





            (5) 

 

when 2x . ( )(mu


, )()( m ) may be taken from [5, 6]; they are given to 

linear expressions with respect to 
n . The associated terms ( ))(0( mu


, ))(0()( m ) of 

zero order correspond to the fields of a straight dislocation and second terms     

( )(mAnu


, )(
)(

mAn ) are proportional to either 
nA  or its spatial derivative 

3/ xAn . Hence we have  

 









n

n

A

S

A

S

P

uuPu

)()()()(

)(

)0(

)0(





,         (6) 

 

on the interface point ),sin,( 3321 xxxxP nnS  ; Appendix A below gives the 
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complete list, component by component, for the sinusoidal screw dislocation; 

the corresponding values for the glide-type sinusoidal edge dislocation have 

been given in [10, 11]. ( Wmu )( , Wm)()( ) are obtained with the help of Galerkin 

vectors; these are available for the edge dislocation (see [10, 11]). For the screw 

dislocation, we arrive at Galerkin vectors V


 with only one non-zero 3x

component, arranged in the form 
 

xkixki exkekxV
  .

23

.

33 )()()(            (7) 

 

under the condition 02

3

2

2

2

1

2  kkkk


 that ensures the biharmonicity of 
3V

. For 
3V  to cancel far from the interface, we write  

 

2

3

2

1

1)(

22 )1( kkikk mm            (8) 

 

with 1m  when 
32 sin xx nn  (half-space 1) and 2m  when 

32 sin xx nn  (half-space 2). We use the notations  

 

),,( 3

)(

21

)( kkkk mm 


, )( )(

3

)(

3

mm k


  , )( )(

3

)(

3

mm k


  ; 

 

hence for half-space 1 (
32 sin xx nn  ), solid (1) 

 

xkixki exexVxV
 .

2

)1(

3

.)1(

3

)1(

33

)1()1(

)()(    

 

and for half-space 2 (
32 sin xx nn  ), solid (2) 

 

xkixki exexVxV
 .

2

)2(

3

.)2(

3

)2(

33

)2()2(

)()(   . 

 

The elastic fields corresponding to 
3V  (7) may be first calculated; then, more 

general forms Vmu )(  and Vm)()(  are constructed from the previous ones by 

superposition over 1k  and 
3k ; we may write 

BAmBmAmVm

BAmBmAmVm uuuu









)()()()(

)()()()(

)()()()( 



        (9) 

 

where terms with A and B refer to 
3  and 3  in (7) respectively. For Vmu )(  and 

Vm)()(  to conform with )(mu


 and )()( m , the summation over 1k  is 

continuous and that over 
3k is discrete. 

3k  takes three values : 
n , 0, 

n . The 
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fields corresponding to 03 k  are denoted Vmu ))(0(  and Vm))(0()( and terms 

associated with 
nk 3
 and 

n  are merged to form expressions denoted by
VmAnu

)(
 and VmAn )(

)( ; this is made possible by requiring that  

 

)()( )(

3

)(

3 n

m

n

m   , )()( )(

3

)(

3 n

m

n

m   .     (10) 

 

In (20), )()(

3 n

m   stands for ),,( )(

213 n

mkk  . We write 

 

VmAVmVm

VmAVmVm

n

nuuu

)())(0()(

)())(0()(

)()()(  




       (11) 

 

introducing subsequently the notation Amu ))(0(  , AmAnu
)(

, Bmu ))(0(  , BmAnu
)(

and 

even for the stress. Vmu ))(0(  and Vm))(0()( are 3x independent; VmAnu
)(

 and 
VmAn )(

)(  are proportional to the sinusoid )( 3xAn
 or to its spatial derivative 

3/ xAn  . Here also, for points 
SP on the interface, Vu


  and V)(   are 

expanded up to terms of first order with respect to 2x  in a similar manner 

as in (A.2) (see Appendix A) for u


 and  )(  . Requiring  uuV 
 and 

 )()(  V  lead to the following equations, writing first the conditions 

corresponding to 03 k (i.e.  )0()0(

i

V

i uu  and  )0()0(

ij

V

ij  ). 

 

 )0(

3

)0(

3 uu V  

0
1

)1(

3

2

)2(

3 
CC


           (a) 

 
 )0(

13

)0(

13  V and  )0(

23

)0(

23  V  

0)1()1( )1(

31

)2(

32             (b) 

2

1

1)1(

31

)2(

32

)sgn(
)()1()1(

k

k
QQ bc       (c)  (12) 

 

where )1(2/ mmm bC   , 4/)( 12 CCiQb  , 4/)( 1122 CCiQc   ; 

111 /)sgn( kkk  ; m  and m are shear modulus and Poisson's ratio. In 

equations (12 a to c) above, )(

3

m  stands for )0,,( 3

)(

213 kkk m . Other elastic 

field components are zero. The conditions corresponding to 
 nn A

i

VA

i uu  and 


 nn A

ij

VA

ij   are now listed as :  
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Next, we are concerned with satisfying boundary conditions : (12) leads to the 

displacement and stress fields due to an interface straight screw dislocation              

( ),0,0( bbIII 


) parallel to the 3x direction at the origin; the interface is the 

31xOx plane. (13) provides the complementary terms (to first order in 
n ) in 

the elastic fields of an interfacial sinusoidal screw dislocation.  

 

 

III - CALCULATION RESULTS 
 

III-1. Displacement and stress fields of an interface glide-type sinusoidal  

             edge dislocation  
 

When 
n  is small, the elastic fields (displacement )(mu


 and stress )()( m ) at an 
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arbitrary position ),,( 321 xxxx 


may be expressed (to linear terms in 
n ) as  
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with m=1 and 2 for medium S1 and S2, respectively. ))(0( mu


 and ))(0()( m  are 

of zero order, independent of 
3x , and correspond to the elastic fields of a 

straight edge dislocation lying on the planar 31xOx interface. These are given 

under continuity requirement of the fields on crossing the interface [10, 11]. 
)(mAnu


 and )(

)(
mAn  are oscillating fields proportional to either 

nA or its spatial 

derivative
3/ xAn  with respect to 

3x , written [11] in the forms 
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Here, expressions with  are associated with a sinusoidal edge dislocation in 

an infinitely extended homogeneous medium (m) with the equal elastic 

constants (see oscillating fields given in [5, 6, 12]); second terms with W read 
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n )(

to)( are given in [11]; )(

to

mA

da
n  are real determined essentially 

by continuity conditions of the fields )(mAnu


 and )(
)(

mAn on the interface. These 

lead to a number of equations denoted by nA

ie (see relation (43) in [11]). We 

follow the treatment in [11] (same definitions and notations) but introduce 

some changes that follow; in this section, we use the notation Eqn (N), N 

integer, to designate an equation (N) in [11] : 

(i) Retaining only terms proportional to 
1/1 x , )(

2

mAnu  is written as  
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nA

e3
 is constant with m=1 and 2. nA

e3
 is used in place of nA

e3
in Eqn (43). We 

stress that nA
e3

 is proportional to the modified Bessel function ][ 11 xK n only 

that has a singularity of the type 
1/1 x  but additional terms with 

1/1 x  do exist 

in )(

2

mAnu . Taking into account all the singularity terms with 
1/1 x  leads to nA

e3
 

above. (ii) nA
e72

 in Eqn (43) is proportional to the modified Bessel function 

][ 10 xK n only that has a singularity of the type 
1ln x ; however, there are other 

terms with 
1ln x  in )(

12

mAn . Collecting all the terms with 
1ln x  and setting the 

coefficient of 
1ln x  constant with m corresponds to nA

e72
 constant with m with 
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nA

e72
 is at present considered in place of nA

e72
. (iii) We add a new equation nA

e9
 

corresponding to the condition that ),0,( 31
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23 xx
mAn is constant with m=1 and 2. 

Restricting ourselves to all the terms with 
1/1 x only, we obtain 
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We stress that all the others nA

ie in Eqn (43) are unchanged. (iv) In the resolution 

procedure [11], it is required to choose four equations (Ei), i=1 to 4, 

corresponding to four independent equations )2()1( nn A

j

A

j ee  . A choice 

corresponds to Eqn (51); (E1) and (E2), there, are at present replaced by (E1)* 

and (E2)* below.  
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(E3) and (E4) are unchanged. The identifications corresponding to (E1)* and 

(E2)*, to be used in place of (E1) and (E2) in Eqn (52), are :  
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With changes (i) to (i4) above, the resolution methodology [11] can be 

followed, step by step, with no more modifications in the various listed 

relations there ( i.e. Eqn (43) to Eqn (56) included, and in addition, all the 

expressions in the associated Appendix). Again, we stress that the singularity 

term in ),0,( 31

)(

23 xx
mAn  is given by (19) above with nA

e9
 and not Eqn (57) with 

nA
e72

. The solutions 
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c
n  (m=1 and 2) have been listed in Eqn (53) 

to Eqn (55). Using the two first equations in Eqn (47), we can write 
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d  are obtained using Eqn (44): 
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In summary, all the )(

to

mA

da
n  (m=1 and 2) have been given, permitting one to 

express the oscillating parts (15) of the elastic fields )(mu


 and )()( m (14). We 

stress that in our previous work [11], we have imposed coefficients of modified 

Bessel functions ][ 10 xK n and ][ 11 xK n constant with m in the elastic fields 
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focuses on functions 
1ln x  and 

1/1 x , respectively. Both procedures are self-

consistent and should yield the equal )(
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III-2. Displacement and stress fields of an interface sinusoidal screw  

             dislocation  
 

III-2-1. Displacement and stress fields due to an interface straight screw  

             dislocation  
 

Two distinct values for )(
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where 
ij  is the Kronecker delta. )(

3

m

a  is obtained using (12 a) and continuity 

requirement for ))(0( mu


 at the crossing of the interface at 02 x . )(

3

m

b is 

obtained from (12 b and c) associated with the stresses. None of these values 

satisfies the entire (12). The associated elastic fields denoted 
Vm

bau
))(0(

and


 and 

Vm

ba

))(0(

and)(  are displayed below. A superposition of these partial fields will 

provide the complete form of the solution. We have at position ),,( 321 xxxx 


: 
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where  1221
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a   , j = a and b and )( 1x is the Dirac delta 

function; here 
A has the following definition : 0)( 2 xA  when 02 x  and 

1)( 2 xA when 02 x ; 2

2

2

1

2 xxr  . The other elastic fields are zero. We 

define the elastic fields )())(0( xu m 
and )()( ))(0( xm 

  of an interface straight screw 

dislocation as  
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Again ))(0( mu


and ))(0()( m  are due to a straight screw ),0,0( bbIII 


 parallel to 

the 3x direction at the origin in an infinite medium (see [5, 6] for example); 
Vm

bau ))(0(
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
 and Vm
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and)(  are given in (25). )(
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ba are real, to be determined by 

the condition that the elastic fields satisfy the following relations : 
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plane.  
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  do correspond to an interface straight screw 

dislocation. Next, we express the quantities involved in the above mentioned 

requirements and proceed to satisfy these.  
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where )1(2/ mmmm CbD   ; all '
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These are in complete agreement with previous works (see [13] and references 

therein). Other elastic field components are zero.  

 

III-2-2. Elastic fields of an interface sinusoidal screw dislocation  
 

Five values for ( )()(
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m  ) are extracted from (13); these are  
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None of these couples satisfies the entire conditions (13). For each couple, we 
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and ( nA
e12 and nA

e82 ), respectively, have been taken constant. 

 ),0,( 31

)(

2 xxu
mAn , ),0,( 31

)(

12 xx
mAn and ),0,( 31

)(

23 xx
mAn  are bounded 

functions. Under such conditions, we have considered their linear forms 

with respect to 1x  and posed the terms proportional to 1x  constant with 

m=1 and 2. 

 ),0,( 31

)(

11 xx
mAn and ),0,( 31

)(

22 xx
mAn  have terms with singularities 1/1 x  

and those of   11

22

1120

2 /ln/2/ xxxxxI nn  ; the associated 

coefficients ( nA
e41 and nA

e51 ) and ( nA
e42 and nA

e52 ), respectively, have been 

set constant.  

 ),0,( 31

)(

3 xxu
mAn and ),0,( 31

)(

33 xx
mAn contain terms with the singularity 

1/1 x  only. The associated coefficients nA
e3 and nA

e6 are taken constant.  

 

We may write :  

 ),0,(),0,( 31

)2(

131

)1(

1 xxuxxu nn AA
 








)21(
224

)21(1 )(

1

)(
)(

1)(
)(

1)(

m

m

c

mA

c

m

amA

b

m

amA

a
mm

m

s
ssC

nnn 



 

                                           nnn Am

e

m

e

mA

e

m

d

m

d

mA

d essss 11

)(

2

)(

1

)()(

2

)(

1

)(






 , 

  nn A

mrm

m

c

m

mA

c eQs 12

)(

1

)(
)2(

1
 


 ; 

 


)2(

2

)1(

2
nn AA

uu  

  )34()1(2)1(2/)1(
1

1

)(

1

)()(

1

)(

mmbm

m

b

mmA

b

m

a

mmA

a

m

ss nn 


  

      



























 )

~
1(

11
)1()1( )(

1

)(

4

)(

3)(

2

)(

1

)(

1

)(

1 r

m

d

m

m

d

m

m

dm

d

m

d

mmA

db

m

b Qr
r

s

s

s
ssr n  

                        nn Am

e

m

e

m

e

mm

e

mA

e esssr 2

)(

3

)(

2

)(

1

)(

1

)(
)1(2  ; 

 


)2(

3

)1(

3
nn AA

uu  

  )(

1

1)()(

1

)(
)1)(1(4)1()1(22/

1 m

dmm

mmA

drm

m

c

mA

cm

m

rrQsD nn   


 

                                            nn Am

em

mmA

e er 3

)(

1

1)(
)1(4)1(    ; 

 



  Rev. Ivoir. Sci. Technol.,  28 (2016) 24 - 59 42 

P.N.B. ANONGBA 


)2(

11

)1(

11
nn AA   

 )1(1
224

)(

1

)(
)(

1)(
)(

1)(

rm

m

c

mA

c

m

amA

b

m

amA

a
m Qs

ssC
nnn    

     nnn Am

em

mm

e

m

e

mA

e

m

dmm

mm

d

m

d

mA

d erssrrss 41

)(

1

)(

2

)(

1

)()(

1

)(

2

)(

1

)(
2)1()1(2)1(   , 

  nn A

mrm

m

c

mA

c eQs 42

)(

1

)(
)2(   ; 

 


)2(

22

)1(

22
nn AA   

 rm

m

c

mA

c

m

amA

b

m

amA

a
mm Qs

ssC
nnn 


)1(2

224

)21( )(

1

)(
)(

1)(
)(

1)( 


 

                   )(

1

)(

2

)(

1

)(
)1)(1(2)1( m

dmm

mm

d

m

d

mA

d rrssn    

                                 nn Am

em

mm

e

m

e

mA

e erss 51

)(

1

)(

2

)(

1

)(
)1(2)1(   , 

       nn A

mrm

m

c

mA

c eQs 52

)(

1

)(
)2(   ; 

 


)2(

33

)1(

33
nn AA   

)(

1

1)()(

1

)(
)1)(2(2)1(2

2

m

dmm

mmA

d

m

c

mA

c
m rrs

C
nn     

                                           nn Am

em

mmA

e er 6

)(

1

1)(
)2(2)1(    ; 

 


)2(

12

)1(

12
nn AA   

  )34()1(2)1(
2

)1( 1

)(

1

)(
)(

11)(

mmbm

m

b

mmA

b

m

ammA

a s
s

nn     

     )~
1)(1()1()1( )(

1

)(

4

)(

3

)(

2

)(

1

1)(

1

)(

1 rmm

m

d

m

d

m

d

m

d

m

d

mmA

db

m

b Qrrrssssr n    

                        nn Am

e

m

e

m

e

m

e

mmA

e ersss 7

)(

1

)(

2

)(

3

)(

1

)(
2)1(  ; 

 


)2(

13

)1(

13
nn AA   

           )(

1

1)(

2

)(

1

)()(

1

)(
)(

1)(
)1(4)1(

24

m

em

mm

e

m

e

mA

e

m

c

mA

c

m

amA

a
m rsss

sC
nnn     

                   nn Am

drmmm

mm

d

m

d

mA

d erQrrss 81

)(

1

1)(

2

)(

1

)(
)

~
1)(1)(1(2)1(    , 

          )(

1

)()(

1

)(
)1)(1(2)1()1(

4

m

dmm

mmA

dr

m

c

mA

c
m rrQs

D
nn    

                                           nn Am

em

mmA

e er 82

)(

1

)(
)1(2)1(   ; 

 


)2(

23

)1(

23
nn AA   



43  Rev. Ivoir. Sci. Technol.,  28 (2016) 24 - 59 

P.N.B. ANONGBA 

  )34()1(2)1(
2

)1( 1

)(

1

)(
)(

1)(

mmbm

m

b

mmA

b

m

ammA

a s
s

nn    

                bbmb

m

br 111

)(

1 )1)(1(21    

                     



























 )

~
1(

11
)1( )(

1

)(

4

)(

3)(

2

)(

1

)(

r

m

d

m

m

d

m

m

dm

d

m

d

mmA

d Qr
r

s

s

s
ssn  

                                        nn Am

e

m

e

m

e

m

e

mmA

e ersss 9

)(

1

)(

3

)(

2

)(

1

)(
2)1(  .              (36) 

 

All )(me nA

i  are constant with m=1 and 2 (i.e. )2()1( nn A

i

A

i ee  ).We can see that 

nnn A

m

AA
eee 125242  . There are twelve equations in (36) with ten unknowns 

)(

to

mA

ea
n . A solution can be found with ten independent equations. A 

methodology of the solution may be [11] : (i) express the 
)2(nA

i  as a function 

of the 
)1(nA

i  giving five relations, (ii) report these relations in five independent 

equations in (36); we have then a linear system of five equations with 

unknowns 
)1(nA

i  that can be resolved by the usual classical method with 

determinants. The result is five expressions linking the 
)1(nA

i  with the elastic 

constants of the mediums m=1 and 2. (iii) Come back to the 
)2(nA

i  relations to 

find their respective values as a function of the elastic constants. Here however, 

we shall proceed differently by first calculating values of a number of nA

ie , 

including  those associated with the singularity 1/1 x  in the stress fields. When 

a crack is represented by a continuous distribution of infinitesimal dislocations, 

stress terms that have a singularity 1/1 x  contribute a non-zero value to the crack 

extension force. We have, using (36), 
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Equations )2()1( 33
nn AA

ee  , )2()1( 66
nn AA

ee  , )2()1( 11
nn AA

EE   and 

)2()1( 4242
nn AA

ee   are four relations that provide the values of unknowns 
)(mA

c
n  

and )(

1

)()(

1

)(
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e
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e

m

dm

mA

d rrr nn   , m=1 and 2, in the forms :  
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                                        )21)(1()21)(1()( 211212   CC , 

 

  )(

1

)()(

1

)(
)1(4)1( m

e

mA

e

m

dm

mA

d

m rrr nn   

               )(

1

)(

12

121122 )1(2
)(3

))(21())(2( m

c

mA

cr
mm sQ

CCCC
n









,         (38) 

 

where 12 / . We also have (see (36)) 
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(39) with m=1 and 2 is a system of two equations with unknowns nA
e11  and nA

e51  

that can be solved with the help of the second of (38). A direct inspection of 

various nA

ie  in (36) shows that these can be given values with the help of (38). 

Hence, we display following expressions ( nA
e52  is given in (38)) :  
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These expressions are unchanged by inverting the elastic constants. At this 

stage, only 
)(mA

c
n  is given a value (38). To proceed further, we introduce two 

parameters 
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and search for these two parameters and 
)(mA

d
n  and 

)(mA

e
n , m=1 and 2; we have 

eight unknowns and look for eight independent equations. Because the value 

of nA
e11  is known (40), its expressions with the associated 
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We obtain 
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Relations (43) give 
)(mA

d
n  and 

)(mA

e
n , m=1 and 2, as a function of 

)(mA

ab
n

  only 

through )(

1

mb . It remains to evaluate 
)(mA

ab
n

  and 
)(mA

ab
n

  with four independent 

equations. We may use : )2()1( 22
nn AA

ee  , )2()1( 77
nn AA

ee  , 

)2()2()1()1( 7979
nnnn AAAA

eeee   and )2()1( 8181
nn AA

ee  . We then have four 

independent equations with unknown 
)(mA

ab
n

 that can be resolved by the usual 

classical method with determinants (see [11] for analogous analysis). In 

summary, the elastic fields ( )(mu


 and )()( m : (33)) of an interfacial sinusoidal 
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screw dislocation (Figure 2) to linear order in 
n , are the sum of two terms: 

the first ones correspond to the elastic fields ( ))(0( mu


 and ))(0()( m : (30)) 

produced by an interface straight screw dislocation; second terms are 

oscillating expressions ( )(mAnu


, )(
)(

mAn : (34)), proportional to the perturbation 

33 sin)( xxA nnn  or its partial derivative 
3/ xAn  . These latter expressions 

can be written as linear combinations (35) of  partial elastic fields VmA

i
nu

)(
(i= a 

to e) (see Appendix B). The associated proportionality coefficients )(mA

i
n

fulfilled continuity requirements (36) of the elastic ( )(mu


, )()( m ) on crossing 

the sinusoidal interface. These can be solved to provide values for the )(mA

i
n

(see (38) and (43) with the associated text). A number of nA

ie  values have been 

calculated (40) that include the coefficients of the various stress terms with the 

singularity 1/1 x . We shall make use of certain terms in the crack analysis to 

come (part II of this study).  

 

 

IV - DISCUSSION AND CONCLUDING REMARKS 
 

In the present study, the displacement and stress fields of sinusoidal 

dislocations (glide-type edge and screw) lying, at the origin, on a non-planar 

interface S with the form of a corrugated sheet (Figure 2), have been 

determined. Stress terms with the singularity 1/1 x  have been emphasized in 

view of crack analyses. As an illustration, consider the stress )(

33

m  (case of 

sinusoidal screw dislocation only): on the interface nAx 2  is assumed small. 

We can take the linear form of the stress up to term with 2x , i.e. 
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We have 
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The first term ))(0(

33

m  (30) is zero. Restricting ourselves to stress terms with 

1/1 x  only, it is easy to see that 
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The value of nA
e6 is known (40) with no reference to the 

)(mA

i
n . This result is 

sufficient in the analysis of a number of special crack fronts when )(

33

m  is 

involved (see [5, 6] for the case of homogeneous solids). But in general, it will 

be necessary to write down explicitly the value of all the 
)(mA

i
n  in order to have 

the stress singularities. This study also reveals the presence of a term with Dirac 

delta function )( 1x in ))(0(

13

m  (30) on the interface at 02 x . The associated 

coefficient is proportional to shear modulus m ; hence it changes with m=1 

and 2. No alternative has been found to this value. Assume now that the 

interface with the associated dislocation have a more general form f (1) in the 

32xx plane. Writing  33 cossin xxB nnnnn    and assuming  small, the 

elastic fields )(mu


 and )()( m  in the bi-material are simply (to linear terms in 

the amplitudes) 
 

)())(0()( mm

h

m uuu 


 , 

)())(0()( )()()( mm

h

m
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where 
 


n

mBm nuu
)()( 

 , 


n

mBm n )()( )()(   .                                                                                        (46) 

 

Here, ))(0( m

hu


and ))(0()( m

h  are the fields of an interface straight dislocation, 

displaced by hx 2 from the origin. In the various elastic field expressions 

obtained with sinusoidal dislocations with shape nA , we just have to replace 

nA with nB  and add the symbol  in front of the oscillating elastic fields; in 

addition, 2x  has to be replaced by hx 2 . We shall proceed further by 

providing expressions for the elastic fields of interface climb-type edge 

sinusoidal dislocation ( )0,0,(bbII 


), crack tip stresses and crack extension 

force. These will be the subject of part II of the work.  
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where  

 

)]1/(1)1/(1[ 21  C ,   4/)( 12 CCiQb  ,  

4/)( 1122 CCiQc   ,   )1(2/ mmm bC   ; 

 

111 /)sgn( kkk  ; m  and m are shear modulus and Poisson's ratio.  
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Terms in brackets  are operators acting on nA  and aI1 , separately; 1  is the 
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