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RESUME

Le phénomeéne de flambement des structures viscoélastiques, en supposant que
le systeme étudié n‘abandonne pas sa position initiale jusqu'a un instant T fini,
a fait I'objet de plusieurs recherches. A chaque probléme viscoélastique linéaire
a mémoire longue, de type solide, on associe un probléeme délasticité
instantanée et un probleme d‘élasticité retardée. Dans ce travail on a montré
I'existence de branches bifurquées méme si le chargement n'atteint pas la
charge critique instantanée en supposant que le systéme peut étre or de son état
naturel en moins l'infini.

Mots-clés : bifurcation, viscoélastique, élasticité retardée, charge critique,
flambage.

ABSTRACT
Bifurcation and delayed elasticity

The buckling phenomenon viscoelastic structures, assuming that the system
under study does not abandon its original position until a time finished T, was
the subject of several studies. Each linear viscoelastic problem long memory,
solid type, we associate a problem of instantaneous elasticity and retarded
elastic problem. In this work we showed the existence of bifurcated branches
even if the load does not achieve instant critical load assuming that the system
can be gold to its natural state within infinity.

Keywords : bifurcation, viscoelastic, elasticity delayed, critical load,
buckling.
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I - INTRODUCTION

Les matériaux envisagés dans ce document ont un comportement
viscoélastique linéaire a mémoire longue de type solide [1, 2] : a chaque instant
t les contraintes sont des fonctions de toute I'histoire des déformations. A
chaque probleme viscoélastique linéaire a mémoire longue, de type solide, on
associe deux problemes d'élasticiteé linéaire : un probléeme d'élasticité
instantanée [3] et un autre d'élasticité retardée. Dans un grand nombre de cas
intéressants pour les applications, la transformation de Laplace ramene le
probleme viscoélastique a un probléeme de méme forme que celui d'élasticite.
Apreés résolution de celui-ci, la transformation inverse permet le passage a la
solution du probleme viscoélastique. Ce procédé n'est pas valable si la forme
des conditions aux limites change avec le temps, ou si les équations d'équilibre
ne sont pas linéaires. C'est le cas dans les problemes de contact ou dans le
phénomeéne de bifurcation. C'est I'étude de ce dernier phénoméne qui est
envisagé dans ce travail. Le probleme de flambement d'une tige, ayant un
comportement viscoélastique linéaire a mémoire longue, de type solide a été
étudié par [4], puis par [5]. lls ont montré, notamment, en supposant que la tige
était dans son état naturel jusqu'a un instant T, que les charges critiques sont
celles du probléme d'élasticité instantanée et que méme si le chargement reste
constant ou décroit légérement apres avoir atteint la charge critique
instantanée, il y a encore bifurcation. Ces résultats font lI'objet du théoréme 2.
On se propose d'étudier le role d'élasticité retardée. On a ainsi deux possibilités,
soit prendre l'instant de flambement comme origine du temps et étudier le
comportement du systéme en plus l'infini, soit de supposer que le systéme peut
abandonner sa position initiale depuis moins l'infini, et s'intéresser au probléeme
de bifurcation selon le type du chargement et sa valeur par rapport aux charges
critiques retardées. C'est la deuxiéme hypothése qui est envisagée dans ce travail.

Il - METHODOLOGIE : MISE EN EQUATION DU PROBLEME

Pour simplifier les notations qui sont compliquées dés qu'on abord le
phénomene de flambement, on se limite au systeme viscoélastique de liberté un.

I1-1. Description du modéle : Systéme viscoelastique de liberté un

On considere le systeme mécaniquement constitué de deux barres rigides,
identiques AC et CB de méme longueur I. Les deux barres reliées au point C
par une "articulation de type viscoelastique™ (un couple de rappel de type
viscoélastique).
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Figure 1 : Systéeme de liberté un

Dans la configuration naturelle du systéme, 1’articulation C n’exerce aucun
couple sur les deux barres. On suppose que :

e H1) Initialement A, C et B sont sur le méme axe (A, e, ) avec
(A, €, e,, e,)estun repére orthonormé;

e H2) L’extrémité B est guidée sans frottement sur 1’axe (A, e, )
(‘appui sur rouleaux);

e H 3) L’extrémité A est fixée (appui fixe);

e H4) Les efforts extérieurs qui s’exercent sur le systéme sont réduites a
une charge axiale dépendante du temps - p (t)e, appliqué a I’extrémité B.

On suppose connu I’évolution du chargement p(.), on se propose d’étudier les
déformations du systeme dans une évolution quasi-statique.

11-2. Equation d’équilibre

En Vérité, 1’équation du probléme est obtenue en écrivant 1’équilibre des forces
sur la configuration déformée. Pour tout t élément de R , on définit :

e 0 (t): I'angle (e, AC ), qui caractérise les déformations du systéme,
en supposant que celles-ci ont lieux dans le plan (A, e,, ¢,);
e M(t) : lacomposante sur e, du couple de rappel.

Sous les hypothéses H1) a H4) le théoreme des moments appliqué au systéeme
dans une évolution quasi-statique conduit a /’Equation suivante :

M (t) = 1p(t)sin 6(t) Q)
11-3. Loi de comportement [2] [6] [7] [8]
On considére une loi de comportement viscoelastique linéaire a mémoire

longue de type solide et on pose :
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M (t) = 116 (t) - 18 jt g(t—-s)o(s)ds 2

ou g est une fonction définie sur R, positive, continue, décroissante, ayant
zéro pour limite en + « (Mémoire évanescente).

Le fait que le comportement est de type solide se traduit par :

J'Oﬂg(s)ds =1 etos<p<1.

Sipg =0 M (t) =120 (t) correspond & un comportement élastique, avec, 1 est

la premiére charge critique d’élasticité instantanée [3], on parle ainsi
d'élasticité instantanée. Imaginons qu’on impose une déformation

( M(t),
Io si t<0 126
(1) =4
| _ 260
|6 constante , si t=0
o _t
alors, pour t>0,0na:
M (t) = M(l— ﬂJ‘tg(s)ds je
0
Il est clair que im M (t)=M_ =121 - g)e . Cette Equation décrit un

t— +o

comportement dit d’élasticité retardée. Le coefficient d’¢élasticité retardée est
ainsi donné par :

A, = A= B) 3)
I1-4. Equation du probléme

Supposons connue 1’évolution du chargement p(.), et compte tenu des relations
(1) et (2) on obtient I'Equation de bifurcation suivante

A0 (t) - A8 j‘ g(t-s)0(s)ds = p(t)sin O (t) 4)

ou 4 est le coefficient d’élasticité instantanée, g est la fonction de mémoire
et o<p<1.
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I11 - RESULTATS ET DISCUSSION
I11-1. Le probleme de M E GURTIN [4]

Remarquons que ® =0, est la solution triviale de I'Equation (4). Si on
linéarise (4) autour de © =0, onaalors,

300 - 24 [ a(t-9)0(s)ds = p(HO @)

On suppose que le systeme est dans son état naturel jusqu'a un instant T que
I'on prend comme origine du temps: v t<o0, 4(t)=0 eton applique
brusquement , a I’origine, un chargement constant :

(0 si t<oO P(t).

p(t)=l P
[P si t>0

0 t

I'Equation (4") devient :
20 (t) - AB Ltg (t—s)o(s)ds = PO(t) (4"

[4] a montré que I'Equation (4") n'a pas d’autre solution continue que la
solution triviale indépendamment de la valeur donnée du chargement P. On
suppose que le systeme a pu abandonner sa position naturelle de puis moins
I'infini et on se propose d'étudier I'existence de solutions du probleme linéarisé,
autres que la solution triviale, en appliquant un chargement supérieur a la
charge critique retardée 4, = A(1- ) toue en restant inférieur a celle

d'élasticité instantanée 1 , on a alors le résultat énoncé par le théoréme suivant :

Théoréme 1

S’il existe t,eR €t >0 tels que:vte]-o,t,]1p(t)=4, +¢ , alors, le

probleme linéarisé (4") admet une famille de solutions non identiquement
nulles de la forme:

9(0)/1/5?:t
O(t) =He ¥ ° |, H eR’

Donc, au moins pour ce type de chargement le probleme linéarisé admet une
famille de solutions non identiquement nulles et ayant zéro comme limite en
moins l'infini.
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Preuve du Théoréeme 1

Sous I’hypothese du théoréme 1, I’Equation (4') s’écrit :

A0 (1) - AB I;g(t —-5)8(s)ds = (4, +£)O (1), Vtel-oo,t,]

ou encore compte tenu de I'Equation (3) :

(Gf ~£)0() - 28 [ gt-5)0(s)ds =0, Vtel-mt,] (5)
Par dérivation de I'Equation (5) on a:

(4B —¢)0'(t) = 489(0)0(1), Vte]-o,t]

Cette derniére Equation différentielle a pour solution :

A 9 (0)t
6(t)=He ¥ ° HeR' .
et comme Ytel-©.t1pt) =2 +e=2-28 +e< 2, il est clair que:

B 91(0)t
Yo, etparsuite fm o(t)= im He “° =0 d'oulaconclusion.

po-e t— -0 t— —o

I11-2. Le probléme F MIGNOT & J P PUEL [5]

uT

Onpose g(t)=e " avec T est le temps de relaxation qu’on ramene a 1’unité
par un changement d’échelle. En supposant que o(t) = o et p(t) = 0 pour les t

négatifs (le systéme est dans son état naturel sans aucun chargement pour les t
négatifs) dans I’Equation (4), celle-ci devient :

A0 (t)—/we_lj';ese(s)ds = p(t)sin 6(t) (6)

L’Equation (6) est de méme type que celle qui a gouverné les travaux de [5]
dans le cas d’une tige viscoélastique dont on rappelle les principaux resultats
par le théoréme suivant :

Théoréme 2 :

Soient p(.) un chargement continu, et T > 0 . On suppose que :
e (M) v t<o,p(t)y=0eto(t)=0;
e (M2) vtelo, T[,p(t) <2 (24 étantlacharge critique instantanée) ;
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e (M3) p(t)= 2 pour lapremiére fois,
e (M4) Pour tout t dans un voisinage de T, on pose :

P() = 2+ (t-T)p,+(t-T)'Q(t-T)

Sous les hypotheses (M1) et (M2) 6 =0 est ['unique solution de
I’Equation (6) continue sur [o, T[.Sous les hypothése (M1) a (M4) on a les

resultats suivants selon les valeurs de p,. Si o< p,, alors, I’Equation (6)
admet une branche bifurquée définie au voisinage de t =T par:
1

24 +3P )2 A
2AYSRY A
6

12

o(t)=C(t-T) e l+o(t-T)") avec C :(
3u

Si -2 <p <o alors , "Equation (6) admet une famille infinie de
3

branches bifurquées de la forme , pour t voisin de T

1

24 +3P )2 A
AR

172 -t

O(t)=C(t-T) e l+o(t-T)") avec c:[

3u 6

et

WP

Hy(t):[—J i L+o(t-T))e “ " avec y>0
v

. 2 . . .
Si p,<-—2ap alors, o =0 estlaseule solution continue de I’Equation (6)
3

pit) L Une branche bifurquée

|
- _:"_'-_ -__h_.‘?_:\'\_ “Infinité de branche
". ¥ bifurquees
i “Pasde Tl
| bifurcation

T t 7

Figure 2 : Bifurcation selon les valeurs du chargement
elle résume le Théoreme 2

En d’autres termes : pour tout chargement continu, appliqué durant une

"periode finie" sans atteindre la charge critique instantanée, il n’y a pas de
flambement du systeme. Ce résultat est connu déja en élasticité. La nouveauté
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dans ces travaux est I'existence de branches bifurquées méme si le chargement
devient inférieur a la charge critique instantanée apres I'avoir dépasse.

I11-3. Bifurcation dans un voisinage de -« relativement a la charge
critique retardée.

Notre objectif est d’étudier les possibilités du flambement du systéme autour
de sa configuration naturelle. On reprend I’Equation d’équilibre donnée par la
relation (4) et on suppose que la fonction de meémoire décroit
exponentiellement dans le temps [7] (g (t) = e " le temps de relaxation étant
I’'unité"), c’est ce qu'on trouve généralement dans la pratique, on obtient :

20 (t) - AB e“j_t e'0(s)ds = p(t)sin 6(t) @)

Remarquons que dans I'Equation (7) la structure d’étre hors de sa
configuration naturelle depuis t = — . Il est claire que la fonction ® = 0 est
une solution de (7) indépendamment des valeurs de p(.). Dans la suite on se
limite a la recherche de solutions continues et non identiquement nulles de (7)
tellesque: o<o(t)y<rz/2.

Théoréme 3

Soient p(.) un chargement continu, T un nombre réel , ¢ un réel positif et
T,eR T <T, telsque:
e (M5) p()<a, —e,vt<T (4, =2(1-p), 4 étant la charge
critique instantanee)
o (M) PI=A VielT.T] .
(M7) P(t)= A, +e+ae +e°q(t) < 2 _

Vite]-,T] avec q(.) bornee a>0 e ¢&>0.

e Sous I'hypothése (M5), on a alors, toute solution continue de (7) ayant

zéro comme limite en -« , est identiquement nulle sur 1= = TL.

e ii) Sous les hypothéses (M5) et (M6), © =0 est la seule solution
continue de (7), ayant zéero comme limite en - .

e iii) Sous I'hypothése (M7), I'équation (7) admet une famille de branches
bifurquées de la forme:

o)
o(t) = K — t , KeR".
(AL —e—-—ae ) |\ B —& —ae
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On a donc l'absence de bifurcation pour tout chargement inférieur a la charge
critique retardée, méme si celui-ci est appliqué depuis moins I'infini. D'autre
part si un chargement appliqué depuis moins I'infini est supérieur tout le temps
a la charge critique retardée sans atteindre la charge critique instantanée, on a
une famille de branches bifurquées. On retrouve le résultat du cas élastique
mais avec le chargement critique retardée.

I11-4. Démonstrations

Preuve du Théoreme 3 i)

p(.) étant continu et par hypothése T un élément de R tel que :
p(t) < A, - &, Vte]-w,T]

Compte tenu du fait que | p(t)sin 6(t)|< p(t)|6(t)| ,de (7)onaalors:
e 10(t) 1< (4, —e)e |0(t) | +28 j‘ e*|6(s)]|ds

Ou encoure:

Ap

AP + ¢

el o)<

‘[jwla(s)|esds (8)

D’autre part si ¢ () est continue, ayant zéro comme limite en - « , il existe
t,el-o,T] tel que: |o(t,)1= sup |6(t)|. Si 6() n’est pas identiquement

le]—oo,to]

nulle on a alors, |o(t,)|=0 et compte tenu de cette information dans

I’Equation (8), ontire: |a(t,) < 4 |6(t,)| etcomme 0 <& alors, on a:
AB

+ &
1< i
AP + &

<1 cequiestimpossible, donc |o(t,)|= .

Preuve du Théoreme 3 ii)

Par hypothéses (M1) et (M2) il existe T,erR , tel que
P(t) < 4. vte[T;T,]1 , ce qui implique que I'équation (7) s’écrit,
Vte[T:T,] :

e' 10 (t) - Ap jtese(s) ds —e'p(t)sin 6 (t) = /IJ'T e’6(s) ds
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D’aprés le Théoréme 3 i), la seule solution continue ayant zéro comme limite
en -« estla fonction identiguement nulle sur 1- «;T7; et par suiteona:

e' 16 (t) - Ap Jtese(s) ds —e'p(t)sin 6(t) =0

Il suffit de prendre l'instant T comme origine du temps pour retrouver
I'équation du probleme de F. Mignot et J.P. Puel et reprondre la démonstration
du théoréme 1 pour conclure. En effet : compte tenu de la continuité de p(.) et
du fait que p(t) <4 d’une part et du fait que: | p(t)sin O(t)|< p(t) |6 (1) ]
d’autre part,il existe > 0 tel que :

e'A10(t) < A8 jtes |6(s)|ds + (2 —-n)e' |6(t)|,Vte]T,T,]

d'ol: e'|o(t) < ﬂjles [6(s)|ds,Vtell,T,].
77 T

On applique le lemme de GRONWALL a cette derniére inégalité pour
conclure.

Preuve du Théoreme 3 iii)

La déemonstration de ce théoreme est plus longue et plus technique; elle résulte
des quatre propositions suivantes.Pour la suite on suppose que :

Jt, e R,Vte]l-oo,t,] p(t) = 4, +&+ae' +e'q(t) 9
avec, « eR" etq(.)estbornéesur 1-=,t,]

Proposition |

Sous I’hypothése (9),vte]l-«,t,], I’équation(7) est équivalente a :

(F, + F)o() =0 (10)
Fo(0(1) = (A8 —e—ae')e'0(t) - A8 f ‘ese(s) ds (11)
F (0(1) = —e™q(t)o(t) —e' p(t)[sin O(t) - O ()] (12)
Preuve

Vtel-,t,], compte tenu des relations (9) et (3), ona:
A-pt)=AiB —e—-ae' —e’q(t). Ceciimplique que (7) est équivalente a :

Omar BAZ



Rev. Ivoir. Sci. Technol., 27 (2016) 39 - 55 49

(AB — ¢ —ae')e'd(t) - A8 j[ e’0(s)ds = e>q(t)o(t) +e' p(t)[sin & (t) -6 ()]

La conclusion est immédiate, en posant dans cette derniere Equation, F,
comme le premier membre et - F, comme le deuxiéme.

Proposition 11

Il existe t, e R, tel que : vte]-w;t] , 1I’équation F (é(t)) =0, admet une
famille de solutions de la forme :

&

Y ( e' Jw \
o(t) = H — t HeR.
(A —ec—-—ae ) | A —¢—ae

Preuve

On pose y(t) = f‘ e'0(s)ds , dans I’Equation F (0(t)) =0, Vte]-ow,t,],

on obtient 1’équation différentielle suivante :
(48 -2 —ae')y'(t) = 28y (1) (13)

avec, fim y(t)=1m y'(t)=0

t— —o t— —o

et comme lafonction: t— 48 - ¢ —ae', estcontinueettend vers ip — =, en
-, ilexiste r, eR, telque: vte]l-w,r,], B —¢—ae' > 0.

Soit t, = inf (t,;7,),0Nnaparsuite vtel-,t], 1’équation (12) s’écrit:

Y, '
y'(t) = —————y(t) avec: iim y(t) = lim y'(t)=0
A —¢ —ae t— o tos -0
)i
G . e' pi-e
Cette derniére a pour solution:  y(t) = H| ————— ,H eR
A —¢ —ae

Il estclairque: im y(t) = 0, et par dérivation compte tenu de la définition de

t— -0

y(.), on en tire la conclusion.
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Proposition 111

Soit ¢, une solution de: F (6(t)) =0 ; s’il exiSte t, e R etfeC, 1-,t,]
tels que o, + f , est solution de (10) et que &:0 (14)

to -0 00 ([

alors , f est un point fixe de l’application , ;0U Vte]-o,t]:

pryn = 2t f)(t)te Ok Jt M0 ”Esie ds, (15)
A — ¢ —ae (AB —&—ae’) 6,(s)

Preuve

La démonstration de ce résultat est basée sur la méthode de variation des
constantes. En effet : du fait que F,(o(t)) = 0, la recherche des solutions de

(10) sous la forme : o, + f , permet d’ecrire celle-ci comme suite :
(4B — ¢ —ae')e' f(t)- pa jt e'f(x)ds = F, (6, + f)(t)

On pose y(t) = It e’ f(s)ds dans cette derniére équation, on obtient alors
I’équation différentielle suivante :

(B —e—ae')y'(t) - ABy(t) = —F[6,(t) + y'(t)e ']

avec, fim y(t) = lim y'(t)=0

t—> —o t— -0

Ces conditions sont immediates d’aprés (14) et la définition de y(t).
L’Equation sans second membre est: (18 — & —ae')y'(t)- ABy(t) = 0

. ¢! ’ B
elle a pour solutions : y(t) = K| ———— | ;7 = & K eR.
A —¢—ae AP —¢

On dérive y(.) et on remplace y’( t ) et y( t ) par leurs expressions dans
1I’équation compleéte, et on en tire k’(t) :

e

AL CAORS AOLY )[ e ]

/1ﬁ—g—ozeI lﬁ—g—ae[
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o ¢ F (0 '(s)e : '
et par intégration k(t) = o - | 10 () y (S)Se )[ - ] ds
- A — ¢ —ae A —e¢ —ae

y(t) = [;{]y(p i Jt F (8,(s) + y/(s)ses)[ e SJy ds)
Mpo—e-ae' )| Tt AR —c-ae B — o —ae |

Donc par dérivation et compte tenu de la définition de y(t) plus le fait que o
est donneée ainsi :

B { e' Jw
0,(t)=H, — .
(AP —e—-—ae ) | A —c—ae

0

0, (t)

alors, f(t)=

F, (0, + f)(s)e” ds] (16)

[ H.
[p [l (4B —&—ae’)’0,(s)

0

t

F (0, + f)(t)e
Ap —e—ae'

d’autre par compte tenu de la définition de F,, onaalors:

F (0, + f)(t)e 2{ f(t)] [sin 0, + F)(t) - (0, + f)(t)]
- =e |1+ —— |+ p(t)
0, (1) 0, (1) 0, (1)

0

f - .
Ful6 + TXUe =0 etparsuite, le

Compte tenu de I’égalité (14) on a: i,

t—>to 90 (t)
e f .
passage a la limite dans (16) nous donne: m ) £ dou compte tenu
t to 00 (t) 0

de la relation (3): p = 0 et par suite (16) implique (15). Remarquons que
C,(1-«,T]) (ensemble des fonctions continues et bornées sur 1-«,T],
muni de lanorme |g|= sw | g(t)| estun espace de Banach.

te]-»,T]
Définition
Soient T eR et m >o0( ¢, étant une solution de F, (¢)(t) =0 ) on pose :
B(M.T)={gecC,]-oTl:]o< Moty vtel-o:T]
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Proposition 1V

On peut trouver z, e R, M, >0 telque:
B(M,,7,) > 7(B(M,,z,) avec: r estdonnée par (15).

Preuve

Soient m >0, T e R convenablement choisis pour que o,(t) reste voisin de
Zerosur 1-«,T] ;etsoit f e B(M,T); de ladéfinitionde F, (voir(12)) on
tire:

|F (0, + f)t)| = |90(t)e“{1+ L(”)} p(t)e'(sin (8, + )(t) - (8, + F)(1))]
0,(t

< e 10,() | L+M)A +Ae [(0,+ F) ()]

< e’ 10,(1) |1+ M)A +Ae [(8,)°(M)|@Q+M)°

d'ou en tenant compte de la relation (15) :

17 I e o)A @+ M)+ Ao [ @+ m )’

lr (]
|0, (1) |

et par suite on a: <e® A+ M)+ Ao M @+ m)

Le fait que la fonction: t - e* et t+ [o,[ = s 16,(s)| sont continues et

se]-m,t]

convergent vers zéro, quand t tend vers — « , permet de trouver (M’,T”) tel
que: y(f)eB(M ' T’) Onpose r—1=inf (T,T") € M, =sup (M,M’) pour
conclure.

Proposition V
On peut trouver 7, c R;M, >0 telsque , soit contractante sur B(M ,,z,).

Preuve

Soit (M ,;z,) un couple vérifiant la proposition V. Soient f, et f, deux
éléments de B(M ;z,) et te]-=;z,].Ladéfinitionde F, permet d’écrire:

| F, (0 + f)(t)-F (0 + f,)(1)|=
|q(t)eSt(f1+ £)(t) + p(t)et[sin (0, + f)(t)—sin (8, + f,)(t) - (f, - fz)(t)]|
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Ona ¢,(t) estvoisindezérosur 1-«»,z,]1, etcompte tenu de la relation (14),
alors :

['sin (8, + f,)(t)—sin (8, + f,)(t) = (f, - f,)(1)|=
la, |.1[(8, + £)° = (6, + ,)° +S(8, + f,) =S8, + £,)I(t)]

ou S est analytique d’ordre 5, Ce qui fait que :
1S(0,+ f)(1) S0, + f)I<a, | (f,— £, .10, @+M)*

puis
| sin (490 + fl)(t)— sin (90 + fz)(t)—(f1 - fz)(t) |<
a, 10, ()(f,— f,)()h(M)+a, |6, O)f - f))@+M -1)°

ou h est un polynéme en M, indépendant de t. On a donc :

| F (0, + f)(t)-F (8, + f,)(1) <

(= £)1Mc, 10, 1" @+M )% +ce |6, h(M,)+ce’]
d'ou compte tenu de (15) :

sup |7 (F)(s) =7 (f,)(s) I<

se]-w,t]

0

et comme les fonctions t e*, t |p,| et t o, sont continues et

eg+c, o] nem et + c.e?ip ) s |(f,~ £,)(s)

se]-w,t]

90

convergent vers zéro en — « , alors, il existe M et z/ tels que
4 N4 2 , 2t '
loo @ +m e, +e,fo,[ nem )+ et <1, Vtel-o, /]

Onpose M, =sup (M,,M/) et 7, =inf (¢,,7,) etconclure.

IV - CONCLUSION

Le comportement viscoélastique d'un nombre important de matériaux peut se
déclencher par une variation de température. Les matériaux viscoélastiques
sont de plus en plus présent dans la composition de plusieurs autres éléments
interviennent dans de nombreux domaines tels que le génie civil [8 - 10] le
médical [11], I'aéronautique, (etc.) A chaque probléme viscoélastique linéaire
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a mémoire longue s'associé un probléme élastique instantanée et un autre
d'élasticité retardée. Durant ce travail on a essayé de mettre en lumiére le réle
d'élasticite retardée en choisissant moins I'infini comme origine du temps et on
a examiné l'existante de solutions non identiquement nulles. [4] a montré que
I'Equation de bifurcation linéarisée n'a pas d’autre solution continue que la
solution triviale indépendamment de la valeur donnée du chargement P
appliqué brusquement a un instant T qu'on raméne a zéro par un changement
de variable. Ce résultat est basée sur le fait que le systéme ne peut abandonner
sa position initiale qu'a I’instant t fini. On supposant que le systeme a pu
abandonner sa position naturel de puis moins l'infini, sous l'effet d'un
chargement qui est supérieur a la charge critique instantanée 4, = A(1 - 8)
sans atteindre la charge critique instantanée, on a monté I'existence d'une
famille de solutions continues ayant zéro comme limite en moins l'infini. Pour
le probléme non linéaire, Equation (4), sous I'nypothése que le systeme reste
dans sa position naturel jusqu'a un instant T fini, [3] ont montré qu'il n'y a pas
de bifurcation tant que le chargement n'a pas atteint la premiére charge critique
instantanée . . Dans le théoreme 3, on a montre, on supposons que le systeme
peut abandonner sa position initiale qu'il n'y a pas de bifurcation tant que le
chargement reste inférieur & la premiere charge critique retardé 1, = A1(1- 8)

, et que pour, au moins, pour un chargement de type
p(t)= A, +s+ae' +e’q(t) < 2

Vte]-»,T] avec q()  bornee a>0 e ¢>0,ilya bifurcation

méme si le chargement n'a pas atteint pas la premiére charge critique
instantanée. Nous espérons que les travaux a venir s'intéresseront aux autres
types de chargements, a I'existence éventuelle de bifurcation méme si le
chargement devient inférieur a la premiére charge critique retardée apres
I'avoir dépasse.
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