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ABSTRACT

In the present study, an analysis is made of the conditions of failure in a
rectangular bar bent by terminal transverse force F and terminal couple Mc. The
specimen under load consists of a region (1) in tension, separated from a region
(2) in compression by a median surface (initially a plane called the "neutral plane™)
with zero-change in extension or contraction of linear elements. The analysis uses

the idea that this is the condition G, = 2 that controls the complete failure of the
fractured specimen, where G, is the crack extension force (per unit length of the
crack front) pertaining to the tip of the crack that moves through the compression
region (2) and y , the surface energy. G, is calculated in a model with a crack
inclined by an angle ¢, with respect to the local compression direction. The
considered stresses are the applied resultant compression (-o ) , the associated
induced internal Poisson tension vo (v is Poisson's ratio) and the applied shear

stress r,, = F /'S, (S, isthe cross section of the sample). A representation of the

crack by a continuous distribution of straight edge dislocations, with infinitesimal
Burgers vectors, is adopted. The theory indicates that when the specimen is
subjected to a shear stress (this occurs with a terminal transverse applied load), the
propagating crack evolves in the form of an exponential with a bending moment
M . that depends on the elastic constants and specimen dimensions. However, in

absence of shear stresses (bending by terminal couple only), the crack tends to
align along the local compression direction with a bending moment M . = M , /v

indicating, in the latter situation, that three times larger bending moments, at least,
are required to break specimens in isotropic media. A relation between failure
stresses in bending and tension tests are also evidenced in the results.

Keywords : elasticity, fracture mechanics, dislocations, bending test, crack
propagation, failure stresses.
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RESUME

Une théorie de la rupture d'une barre rectangulaire en flexion sous
I'effet d'une charge et d'un couple

Dans la présente étude, une analyse est faite des conditions de rupture dans une
barre rectangulaire fléchie par une force verticale F et par un couple M.
L'échantillon sous charge comprend une région (1) sollicitée en tension, séparée
d'une région (2) sollicitée en compression, par un plan médian non déformé dit

"neutre”. La théorie exploite I'idée que c'est la condition G, = 2 qui controle la

rupture compléte de I'éprouvette, ou G, est la force d'extension (par unité de
longueur du front de fissure) de I'extrémité de la fissure qui se propage dans la
région (2) et , I'énergie de surface. G, est calculée dans un modéle de fissure

inclinée d'un angle ¢, par rapport a la direction de la compression locale
appliquée. Les contraintes en présence sont la contrainte de compression(-o ) ,
la tension induite correspondante de Poisson vo | (v est le rapport de Poisson) et

la contrainte de cisaillement z, = F /S, (S, estla section droite de I'éprouvette).

Une représentation de la fissure par une distribution continue de dislocations coins
droites, avec des vecteurs de Burgers infinitésimaux, est adoptée. L'analyse
indique que lorsque I'échantillon est le siége d'une contrainte de cisaillement (cas
de la flexion par une force "transverse"), la fissure évolue dans la forme d'une
exponentielle avec un moment de flexion M , dépendant des dimensions de
I'éprouvette et des constantes élastiques. Cependant, en absence de cisaillement
(cas de la flexion par couple), la fissure tend a s'aligner suivant la direction locale
de la contrainte de compression, avec un moment de flexion m . = M | /v ; ce qui
indique, dans cette derniére situation, qu'un moment de contrainte trois fois plus
grand est nécessaire pour rompre une éprouvette de flexion dans les milieux
isotropes. Une relation entre les contraintes a rupture en flexion et en tension
découle également des résultats.

Mots-clés : élasticité, mécanique de la rupture, dislocations, essais de flexion,
propagation de fissure, contraintes de rupture.
| - INTRODUCTION

Consider a rectangular bar (Figure 1) of length L, embedded in a wall at one

end in a horizontal position and subjected to a downward vertical force F on
the other end. We use a Cartesian coordinate system x, where origin O is the

centre
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of the sample cross section at the wall, the direction X1 is the axis of the sample,
X2 is the upward vertical and Oxi1x2x3 forms a direct orthogonal axis system, i.e.
the rotation around Oxs from Oxi to Ox2 advances the corkscrew in the positive
direction on Oxs. The objective of this study is to investigate the conditions of
crack propagation in the sample under load. The specimen is assumed large,
homogeneous, isotropic, deforming elastically and fracturing without
plasticity.

7

Figure 1 : Rectangular bar (length Lo, thickness eo and width lo , measured
along x1, x2 and xs, respectively) under bending by a terminal transverse
force F. Regions (1) and (2) are in tension and compression, respectively;
these are separated by the neutral line. The specimen is dashed before
bending and solid under load. Internal stresses are represented about a point
Po on the neutral line with coordinate x1: these are the tension and

compression (+o ), The associated induced Poisson (+ve ), and the shear
(-7,,) . The other symbols are defined in the text

The elastic deformation in the bar under load at equilibrium (Figure 1) has
been well studied [1] and the subject is presented in courses on the elastic
properties of solids (bachelor cycle at the university) [2].
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The upper part (1) in the bar lengthens, the lower portion (2) shrinks in length.
There is no length variation in the median plane (plane separating parts (1) and
(2) before loading); this plane is called the "neutral plane”. As a result, region
(1) is in tension and (2) in compression. Consider a portion of the specimen

(Figure 1) located between the points p, and p, on the neutral line. Its shape
(Eo) is dashed before loading with a length I. In the deformed state, its
solid-line shape (E) is a portion of a circular ring whose faces at points p, and
P, meet at a point C, centre of the ring. We define a Cartesian system p, x,x, x,
where P x, is perpendicular to cp_ with a positive direction directed towards
the end of the bar under load, P, x, is the axis cp directed upward and P x,
is parallel to ox , through p, . The length (1 + a1) of (E) along x, depends on

the value x, of the position where the measurement is performed; we have

al_x 1)
| R

where r = cp, . The corresponding internal stress is

11

o, = E2 @)
R

where E is Young's modulus. The magnitude of o is denoted by o,
o

( 11

negative in part (2); hence (E) suffers tension and compression forces in
regions (1) and (2), respectively, both parallel to p,x, . The force associated to

=o,). o, and x, have the equal sign, positive in part (1) of (E) and

the stresses on (E) about p, is equal to F. This means that tangential forces are
present that are directed along p,x, (in the negative direction), to which
corresponds a shear stress o, sensibly equal to [2]

o, = FIS,=~-7, 3)

12 -

The magnitude of the resultant moment M of the forces at p, is given by

M = Ix;o-nds _E .[X;st _ B 4)

Section Section
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where | = [ x, ds is the geometric moment of inertia of sample section at P,

about P x,. Writing that M is equal to the moment (at P, ) F (L, - x,) of the
forces acting on the complementary part (L, - x,) of specimen, we obtain

1 F(L,-x,).
BalL A L S DA 5
R El ®)

we can then write
Selba Xy ©)

The equilibrium shape of the bar is extracted from

1 o°& 1ox, o' )
R [+ aerax): " ox

for small displacements ¢ (Figure 1) of points of the bar along x, . Integrating
(7) gives

F (L x’ s
£(x,) = —[°—X1—X—1] ®)
El 2 6

with boundary conditions ¢ (x, = 0) = 0 and a¢& /ax,(x, = 0) = 0.

How crack behaves under load in the specimen? Assume that a crack expands
from an arbitrary x, position inside the material. From the stresses about

P, (x,,£(x,), x,) (Figure 1), one can distinguish two distinct types of crack
propagation behaviour, in tension region (1) and compression region (2). In the
former zone (1), the crack is essentially loaded in tension o . From

experiments, it is well-known that a crack loaded in tension, after fracture
propagation over large distances, is directed perpendicularly to the applied

tension. In this position, Poisson's contraction (-vo ) produces no relative

displacement of the faces of the crack, hence does not contribute to crack
motion (as commented earlier [3]). However, taking into account the shear

(-7,,) (much smaller than o), the crack may deviate from its natural position
by a small angle.

P. N. B. ANONGBA



81 Rev. Ivoir. Sci. Technol., 26 (2015) 76 - 90

In the latter region (2), the crack suffers mainly a compression (-o )

(Figure 1). It is also well-known that a crack, experiencing a compressive
stress, aligns itself parallel to the compression direction (see [3] and references
therein). In this orientation, an opening of the crack is performed by Poisson's
tension vo . A deviation of the crack (due to (-z,) ) from the compression
direction is also to be taken into account. The crack extension force (per unit
length of the crack front) G at the tip of the crack that moves in region (1) is
much larger than G the corresponding quantity in part (2) of the specimen.
Hence, this is under the condition G, = 2 (where y is the surface energy) that

complete failure will take place. The crack model used to calculate G2 is
described in Section 2. Physical quantities associated with that modelling
(stresses about the crack tip, crack extension force and natural orientation of
the crack tip, for instance) form Section 3. The properties of fracture (crack
path and failure stresses) are described and discussed in Section 4. Section 5
gives a conclusion to this study.

Il - MODELLING METHODOLOGY

It is planned to calculate a crack extension force Gz pertaining to the tip a crack
that is moving downward (region (2) in Figure 1). The considered model is
presented in Figure 2. This is an infinitely extended elastic medium. With

respect to a Cartesian system o'x,x,x,, the crack with half-length | extends
along x, from x, = —a to &; it is inclined by an acute angle ¢, with respect to
0'x,x, With a straight front running indefinitely in the x,- direction. The
acting stresses are : (1) a uniform compression (-o,) acting in the x; -
direction, (2) a uniform Poisson's tension vo , in the x, -direction and (3) a

uniform shear (-r,,) lyingin x,x, and parallel to x, . The crack is represented
by two families
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(-7,)
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Figure 2 : Inclined crack by angle ¢, with respect to ox, x,, with a straight
front parallel to o'x, . Crack dislocations (1 and 2) are straight edges
parallel to x, with 61 along the applied compression . - direction and 62
along the induced Poisson's tension x, -direction. A shear (-z,,) actsin x,x,
planes in the x, - direction

(1) and (2) of straight edge dislocations parallel to x, with infinitesimal
Burgers vectors 61 = (b,0,0) and 52 = (0,b,0), respectively. The two families
are assumed to be continuously distributed over the crack area from x, = —a
to a. The dislocation distribution function b, (x,) (i=1and 2) gives the number
of dislocations i in a small interval dax, about x, as D,(x,)dx,. The

correspondence with Figure 1 is that o 'can be viewed as located in region (2)
or about p, and the directions x, have the same meaning (Section 1); o' and

the stresses depend on the position x, along the bar. The tensor (s *) of the
applied stresses in 0'x,x,x, reads
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9)

(0 )=|-174 vo |

For a dislocation with Burgers vector (b,0,0) lying indefinitely in the x, -
direction and displaced by x, = h from the origin, the stress field is given at
X'= (x,,X,,x,;) by

x(x = (x, - n)?) e (x, ~mBx + (x, - hy?)

oy (X)=C ; oy (X)) = ; ,
r r
x, - M = (x, - hy?) (X, = h)
cP(x) =c 2 L2 . oW(X) = —2Cy 22—,
r r
oy =04 =0 (10)

r? = xf +(x,-h)>and c = ub/2z@-v) Where x is the shear modulus. For a
dislocation with Burgers vector (0,b,0) lying along x, and displaced by x, = h
from the origin, the stress is

(x, — (%, = (x, = 1)°) .

(2) ;20
o, (x')=C o

O_i(iz)(i.) _c X_;[ X, (5i1 + 5i2) + (Xz; h) (*5i1 + 35i2) + Zvﬁiz} i :1, 2 and 3,
r r

o (x)=0, j=land?2; (12)

s; is the Kronecker delta.

The crack analysis requires the determination of the equilibrium crack
dislocation distribution b, , relative displacement of the faces of the crack,

crack-tip stress and crack extension force. Any point on the crack is given by

x|<a and p =t 6, >0. We ask the crack

P. = (x,,X, = — px,,x,) With
faces to be free of traction, this gives
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+po, =0 (12)

o, Stands for the total stress at any point (x,,x,,x,) in the medium and is

linked to b, ; in (12), we are only concerned with the points of the crack faces.
oy IS written as

— A=, —@)
o, =0, +0, +0, (13)

where o are the ij- elements of matrix (= *) (9) and

o (X %, %) = | o " (%, = x,x,,x,)D, (x)dx (n=1and2) (14)

here o (" (n = lor 2) is the stress field produced by a dislocation displaced by
x, = h = —px from the origin with Burgers vector (b,0,0) 0r(o,b,0) ((10) and

(11)). Introducing the expressions for & in (12) , we obtain

° D, (x)dx
-(r, + po,)+C 1,(—):
X, — X
S (15)
D, (x)dx
| VO'n—pz'12+CJ‘2,(—):O
t CLoX o X

(15) forms the governing equations of our modelling. The corresponding
solutions are well-known

. + XI
D1(X1) = _le Cpgn L > 1
" \/327 X
. vo = — T X'
D,(x) = 2o Pl L (16)

C 2 2
i a’ - x,

with relative displacement ¢. of the faces of the crack in the x, (i=1) and x,
(i=2) directions
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¢1(le) _ _M,/az _ lez ’

zC

4. (x)) = e PT) oz (17)
7zC

11 - CALCULATION RESULTS

Below are presented expressions for the stress about the crack tip and crack
extension force G>. We shall look for crack configuration at which Gz is
maximum. This configuration would correspond to the natural configuration
of the propagating crack; this is under this configuration that we shall apply

the condition for crack propagation G, = 2y . The stresses ahead of the crack
tip at point P, = (x,,x, = —px,,x,), x,=a+s, 0<s<< a, are given, for
sufficiently small values of s, by the following relation :

ENOED YN aé")(xll— X,— PX,, X,)D (x)dx ; x, = a+s (18)

n=1 a-da

with sa << a . Restricting ourselves to the stresses involved in the calculation
of the crack extension force, we obtain

P(3+pHK, +(1-p)K, 1

@+ p*)’ oz s’
5o oK Ky 1
’ @+ p)’ arofs
—p-p)K, +@+3pHK, 1

@+ p)’ Vorfs

Ou (s) =

(19)

‘7_11(5) =
where K, = —(¢,, + po,)Var and K, = (vo - pr,)Var ;termswith K are
due to dislocation family i (i=1 and 2).

The crack extension force can be calculated following a procedure described
in [4]; we have also referred to this in a number of works [3,5]. This gives G2

atp, = (x, = a,x, = —pa,x,) as
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B A-v)lx

GZ(Pa)_ 2 Ga (20)
EQL+p7)

((712 + po—n)2 + (Vo-n - prlz)z)

The behaviour of G, as a function of p is as follows. G, is minimum at p= 0,
increases up to a maximum at p = p, and then decreases asymptotically to a
value G, () as p tends to infinity; we have
1

((l+ v)o, +4/(1+ v)ZoTn2 + 4),

p, =—
2

1-v I 2 _
6. (poo0y= LV NI g 2y

2(1-v)o, WEGW

E L ’ (1+v)oTn+\/(1+V)onn2+4J v

G (oo):flz(l+a_2) (21)

where o = o _/r,. The fracture stress -, = o, is obtained from ™ =2, as

f

. O_t\/ Q+v)o, +4/Q+v)a  +4 22)

Q+v)o, +(B3-v)o, + 1+ oTnz)\/(1+v)on: +4

Where

o, - LEZ (23)
T@-v?l

IV - DISCUSSION

We shall assume that & in our modelling (Figure 2) is given by the magnitude

of &, (6) that depends on the x, - position along the specimen and value of x,
along the axis cp (Figure 1). As a consequence, the various physical
quantities derived in Section 3 depend on x,and x,. Under such conditions,

what is the failure stress o _ in the bending of fracture specimens by terminal
transverse load?
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Fracture may well occur at different x, - positions along the length of the
specimen in Figure 1, due to pre-existing flaw for instance. Hence for fixed
x,, we may assume first (a) that o, is given by (22) with highest o value

corresponding to  x,=-e,/2. This corresponds to  position
B=(x,=0,x,=-e,/2) in Figure 1 for x, =o0. We have o (B)=6L,/e,
(for 1 =1,e; 712 ) that is generally much larger than unity. We first discuss the
behaviour of the crack about B. The crack inclination angle ¢,” with respect to
the x, - direction (Figure 2) (given by p, = w@n ¢, (21)) takes about B for
. >> 1, the simple form tn ¢,(B)=@1+v)o, (B)=6@1+v)L,/e,. With
L, /e, =10 , this gives ¢, (B) = 89 ° that corresponds to a crack path not far
from the x, - direction. Using (6) with x, = 0, x, = x, and writing

de, /dx, = ~(L+v)a, = ~(L+v)S,Ly[x,|/ 1,

we obtain by integration
X, = X, (O)e(1+v)v0x1/| (24)

where x,(0) < 0 in compression region (2) and v, = L,S, is the volume of the

specimen. (24) indicates that the crack path is in the form of an exponential
about the wall in region (2). A complete crack shape about the wall may be a
path parallel to ox, for x, > 0 and in the form of an exponential for x, < 0

with a beginning point somewhere below O (as shown schematically in
Figure 1). A pre-existing flaw may promote failure out of the wall; again, the
exponential path of the crack would be preserved there. The fracture stress o ,

(22) in bending by terminal load F (Figure 1) is proportional to the quantity
o, (23). This latter expression is nothing else than the stress at failure when a

specimen with a crack of half-length | is loaded in tension. When & >> 1,
(22) reduces to

o1 _ & (25)

and in term of the bending moment m = ™M
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M, = (26)

It is important to stress that these relations are intimately related to the
existence of a shear stress ,,. In presence of a shear stress, G, (20) has a

maximum from which is deduced o, (22); however, in absence of a shear

stress (z,, = 0) as we shall discuss, G, has no maximum with p and (22)

(hence 25, 26) does not exist. This brings us to discuss the particular case of
bending without shear stress. An example corresponds to the bending of a bar
by terminal couple [1]; the bending moment M = M _(4) is constant along the

bar so that &,, = M _x, /1 (6). The crack extension force G, in this situation is
given by (20) with -, = 0. We have

6,.(p) = &2 )a”m[v — ] @7)
E 1+ p

This is the expression of the crack extension force at the tip of an inclined crack
under compression and internal Poisson tension discussed by [3]. The factor
v+ p’)l1+ p?) in (27) increases continuously with p from v?(p= 0) to a
value limited by 1 (p large). In absence of shear stress, the inclined crack
(Figure 2) tends to align parallel to the applied compression (-, ) direction

(see [3] and references therein). The natural configuration of the crack system
corresponds to p= 0. Under such conditions, the relation G,_ = 2 yields

o (28)

o _ = t

n

1
1%

Taking o, = M e, /21, we have

M - 2lo, (29)

C
ve,

To compare with (26), we take v =173 for isotropic materials and obtain
M . =3M ,; this indicates that three times larger bending moment is required
to fracture a specimen in bending by terminal couple. Other consideration (b)
for o _ isto average (22) over specimen section; this yields

E
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2
Q+v)o +(B-v)a, + 1+ a_j)\/(uv)zaj +4

0 0

_ o eulz\/ (1+V);n+m dx | (30)

Doing the same thing with (28) gives a couple

M = 4lo, (31)

C
ve,

that is twice the value (29). Considerations (a) and (b) above demand
confrontation with experiments that will be the subject of separate works.

The present modelling assumes a crack path perpendicular to the applied
tension direction in tension regions of the fractured specimen and parallel to
the applied compression in compression regions. This means that fracture
specimens must have large dimensions in order that crack propagation over
macroscopic distance is the controlling mechanism of failure. Crack nucleation
would be internal. Fracture under boundary effects so frequently associated to
small specimens may not be described by the present study.

V - CONCLUSION

In the present study, an analysis has been performed of the conditions of failure
in a rectangular bar, horizontally in a wall at one end and under load about the
other end, either by terminal transverse load or terminal couple. The specimen
consists of two distinct parts (1) and (2) separated by a non-deformed (neutral)
plane. Region (1) suffers tension and (2) compression. It is known from
experiment that a crack propagating over macroscopic distances under tension,
tends to align perpendicularly to the applied tension direction, whilst under a
compressive stress, the equal crack would be directed along the compression
direction. In the last orientation, this is the induced Poisson's tension , much
smaller than the applied stress that is responsible for the opening of the crack
faces. We are thus lead to consider two distinct crack extension forces G, and

G, pertaining to both regions. Because G, is much larger than G, , this is under
the condition G, = 2y that complete failure would take place. We then proceed
to a calculation of G, , using a model of a finite crack in an infinitely extended

homogeneous medium, that permits us to describe a natural configuration of
the crack under load and a relation between the failure stress and the
dimensions of the specimen.
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This study allows to distinguish two types of applied loading : (1) flexion
associated with shear (case of terminal transverse load) and (2) pure bending
without shear (case of terminal couple). Three times larger bending moment at
least is required to fracture the specimen in the latter applied loading condition.
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