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ABSTRACT  

 
In the present study, an analysis is made of the conditions of failure in a 

rectangular bar bent by terminal transverse force F and terminal couple Mc. The 

specimen under load consists of a region (1) in tension, separated from a region 

(2) in compression by a median surface (initially a plane called the "neutral plane") 

with zero-change in extension or contraction of linear elements. The analysis uses 

the idea that this is the condition 2
2
G  that controls the complete failure of the 

fractured specimen, where 
2

G  is the crack extension force (per unit length of the 

crack front) pertaining to the tip of the crack that moves through the compression 

region (2) and  , the surface energy. 
2

G  is calculated in a model with a crack 

inclined by an angle 
2

  with respect to the local compression direction. The 

considered stresses are the applied resultant compression )(
n

 , the associated 

induced internal Poisson tension 
n

  (  is Poisson's ratio) and the applied shear 

stress 
012

/ SF   (
0

S  is the cross section of the sample). A representation of the 

crack by a continuous distribution of straight edge dislocations, with infinitesimal 

Burgers vectors, is adopted. The theory indicates that when the specimen is 

subjected to a shear stress (this occurs with a terminal transverse applied load), the 

propagating crack evolves in the form of an exponential with a bending moment 

f
M  that depends on the elastic constants and specimen dimensions. However, in 

absence of shear stresses (bending by terminal couple only), the crack tends to 

align along the local compression direction with a bending moment /
fc

MM   

indicating, in the latter situation, that three times larger bending moments, at least, 

are required to break specimens in isotropic media. A relation between failure 

stresses in bending and tension tests are also evidenced in the results.  

 

Keywords : elasticity, fracture mechanics, dislocations, bending test, crack 

propagation, failure stresses.  
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RÉSUMÉ 
 

Une théorie de la rupture d'une barre rectangulaire en flexion sous 

l'effet d'une charge et d'un couple 
 

Dans la présente étude, une analyse est faite des conditions de rupture dans une 

barre rectangulaire fléchie par une force verticale F et par un couple Mc. 

L'échantillon sous charge comprend une région (1) sollicitée en tension, séparée 

d'une région (2) sollicitée en compression, par un plan médian non déformé dit 

"neutre". La théorie exploite l'idée que c'est la condition 2
2
G  qui contrôle la 

rupture complète de l'éprouvette, où 
2

G  est la force d'extension (par unité de 

longueur du front de fissure) de l'extrémité de la fissure qui se propage dans la 

région (2) et  , l'énergie de surface. 
2

G  est calculée dans un modèle de fissure 

inclinée d'un angle 
2

  par rapport à la direction de la compression locale 

appliquée. Les contraintes en présence sont la contrainte de compression )(
n

 , 

la tension induite correspondante de Poisson 
n

  (  est le rapport de Poisson) et 

la contrainte de cisaillement 
012

/ SF  (
0

S  est la section droite de l'éprouvette). 

Une représentation de la fissure par une distribution continue de dislocations coins 

droites, avec des vecteurs de Burgers infinitésimaux, est adoptée. L'analyse 

indique que lorsque l'échantillon est le siège d'une contrainte de cisaillement (cas 

de la flexion par une force "transverse"), la fissure évolue dans la forme d'une 

exponentielle avec un moment de flexion 
f

M  dépendant des dimensions de 

l'éprouvette et des constantes élastiques. Cependant, en absence de cisaillement 

(cas de la flexion par couple), la fissure tend à s'aligner suivant la direction locale 

de la contrainte de compression, avec un moment de flexion /
fc

MM  ; ce qui 

indique, dans cette dernière situation, qu'un moment de contrainte trois fois plus 

grand est nécessaire pour rompre une éprouvette de flexion dans les milieux 

isotropes. Une relation entre les contraintes à rupture en flexion et en tension 

découle également des résultats.  

 

Mots-clés : élasticité, mécanique de la rupture, dislocations, essais de flexion, 

propagation de fissure, contraintes de rupture. 

 

 

I - INTRODUCTION 
 

Consider a rectangular bar (Figure 1) of length 
0

L , embedded in a wall at one 

end in a horizontal position and subjected to a downward vertical force F on 

the other end. We use a Cartesian coordinate system 
i

x  where origin O is the 

centre 



  Rev. Ivoir. Sci. Technol., 26 (2015)  76 - 90  78 

P. N. B. ANONGBA 

of the sample cross section at the wall, the direction x1 is the axis of the sample, 

x2 is the upward vertical and Ox1x2x3 forms a direct orthogonal axis system, i.e. 

the rotation around Ox3 from Ox1 to Ox2 advances the corkscrew in the positive 

direction on Ox3. The objective of this study is to investigate the conditions of 

crack propagation in the sample under load. The specimen is assumed large, 

homogeneous, isotropic, deforming elastically and fracturing without 

plasticity. 

 

 
 

Figure 1 : Rectangular bar (length L0, thickness e0 and width l0 , measured 

along x1, x2 and x3, respectively) under bending by a terminal transverse 

force F. Regions (1) and (2) are in tension and compression, respectively; 

these are separated by the neutral line. The specimen is dashed before 

bending and solid under load. Internal stresses are represented about a point 

P0 on the neutral line with coordinate x1: these are the tension and 

compression )(
n

 , The associated induced Poisson )(
n

 , and the shear 

)(
12

 . The other symbols are defined in the text 

 
The elastic deformation in the bar under load at equilibrium (Figure 1) has 

been well studied [1] and the subject is presented in courses on the elastic 

properties of solids (bachelor cycle at the university) [2].  



79   Rev. Ivoir. Sci. Technol., 26 (2015)  76 - 90 

P. N. B. ANONGBA 

The upper part (1) in the bar lengthens, the lower portion (2) shrinks in length. 

There is no length variation in the median plane (plane separating parts (1) and 

(2) before loading); this plane is called the "neutral plane". As a result, region 

(1) is in tension and (2) in compression. Consider a portion of the specimen 

(Figure 1) located between the points '

0
P  and 

0
P on the neutral line. Its shape  

(E0) is dashed before loading with a length l. In the deformed state, its           

solid-line shape (E) is a portion of a circular ring whose faces at points '

0
P  and 

0
P meet at a point C, centre of the ring. We define a Cartesian system 

3

'

2

'

10
xxxP

where '

10
xP  is perpendicular to 

0
CP with a positive direction directed towards 

the end of the bar under load, '

20
xP  is the axis 

0
CP  directed upward and 

30
xP

is parallel to 
3

Ox through 
0

P . The length )( ll  of (E) along '

1
x depends on 

the value '

2
x  of the position where the measurement is performed; we have  

 

R

x

l

l
'

2



            (1) 

 

where 
0

CPR  . The corresponding internal stress is 

 

R

x
E

'

2'

11
            (2) 

 

where E is Young's modulus. The magnitude of '

11
  is denoted by 

n
                        

(
n

 
'

11
). '

11
  and '

2
x  have the equal sign, positive in part (1) of (E) and 

negative in part (2); hence (E) suffers tension and compression forces in 

regions (1) and (2), respectively, both parallel to '

10
xP . The force associated to 

the stresses on (E) about 
0

P is equal to F. This means that tangential forces are 

present that are directed along '

20
xP  (in the negative direction), to which 

corresponds a shear stress '

12
 sensibly equal to [2] 

 

120

'

12
/   SF          (3) 

 

The magnitude of the resultant moment M of the forces at 
0

P is given by  

 

R

EI
dsx

R

E
dsxM

SectionSection

n
 

2
'

2

'

2
        (4) 
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where dsxI 
2

'

2
 is the geometric moment of inertia of sample section at 

0
P  

about 
30

xP . Writing that M is equal to the moment (at 
0

P ) )(
10

xLF  of the 

forces acting on the complementary part )(
10

xL  of specimen, we obtain 

 

EI

xLF

R

)(1
10


 ;          (5) 

 

we can then write  

 

'

2

100

12

'

2

10'

11

)()(
x

I

xLS
x

I

xLF 



        (6) 

 

The equilibrium shape of the bar is extracted from  

 

 
2

1

2

2/3
2

1

2

1

2

)/(1

/1

xx

x

R 














         (7) 

 

for small displacements   (Figure 1) of points of the bar along 
2

x . Integrating 

(7) gives 

 
















62
)(

3

1

2

10

1

xxL

EI

F
x           (8) 

 

with boundary conditions 0)0(
1

x  and 0)0(/
11

 xx .  

 

How crack behaves under load in the specimen? Assume that a crack expands 

from an arbitrary 
1

x position inside the material. From the stresses about 

)),(,(
3110

xxxP   (Figure 1), one can distinguish two distinct types of crack 

propagation behaviour, in tension region (1) and compression region (2). In the 

former zone (1), the crack is essentially loaded in tension 
n

 . From 

experiments, it is well-known that a crack loaded in tension, after fracture 

propagation over large distances, is directed perpendicularly to the applied 

tension. In this position, Poisson's contraction )(
n

 produces no relative 

displacement of the faces of the crack, hence does not contribute to crack 

motion (as commented earlier [3]). However, taking into account the shear 

)(
12

  (much smaller than 
n

 ), the crack may deviate from its natural position 

by a small angle. 
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In the latter region (2), the crack suffers mainly a compression )(
n

        

(Figure 1). It is also well-known that a crack, experiencing a compressive 

stress, aligns itself parallel to the compression direction (see [3] and references 

therein). In this orientation, an opening of the crack is performed by Poisson's 

tension 
n

 . A deviation of the crack (due to )(
12

 ) from the compression 

direction is also to be taken into account. The crack extension force (per unit 

length of the crack front) G1 at the tip of the crack that moves in region (1) is 

much larger than G2 the corresponding quantity in part (2) of the specimen. 

Hence, this is under the condition 2
2
G (where  is the surface energy) that 

complete failure will take place. The crack model used to calculate G2 is 

described in Section 2. Physical quantities associated with that modelling 

(stresses about the crack tip, crack extension force and natural orientation of 

the crack tip, for instance) form Section 3. The properties of fracture (crack 

path and failure stresses) are described and discussed in Section 4. Section 5 

gives a conclusion to this study.  

 

 

II - MODELLING METHODOLOGY 

 

It is planned to calculate a crack extension force G2 pertaining to the tip a crack 

that is moving downward (region (2) in Figure 1). The considered model is 

presented in Figure 2. This is an infinitely extended elastic medium. With 

respect to a Cartesian system '

3

'

2

'

1
' xxxO , the crack with half-length l extends 

along '

1
x  from ax 

'

1
to a; it is inclined by an acute angle 

2
 with respect to 

'

3

'

1
' xxO  with a straight front running indefinitely in the '

3
x - direction. The 

acting stresses are : (1) a uniform compression )(
n

  acting in the '

1
x -

direction, (2) a uniform Poisson's tension 
n

  in the '

2
x -direction and (3) a 

uniform shear )(
12

  lying in '

3

'

2
xx  and parallel to '

2
x . The crack is represented 

by two families  
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Figure 2 : Inclined crack by angle 
2

 with respect to '

3

'

1
' xxO , with a straight 

front parallel to '

3
' xO . Crack dislocations (1 and 2) are straight edges 

parallel to '

3
x  with 

1
b


 along the applied compression '

1
x - direction and 

2
b



along the induced Poisson's tension '

2
x -direction. A shear )(

12
 acts in '

3

'

2
xx  

planes in the '

2
x - direction 

 

(1) and (2) of straight edge dislocations parallel to '

3
x  with infinitesimal 

Burgers vectors )0,0,(
1

bb 


and )0,,0(

2
bb 


, respectively. The two families 

are assumed to be continuously distributed over the crack area from ax 
'

1

to a. The dislocation distribution function )(
'

1
xD

i
 (i= 1 and 2) gives the number 

of dislocations i in a small interval '

1
dx  about '

1
x  as '

1

'

1
)( dxxD

i
. The 

correspondence with Figure 1 is that 'O can be viewed as located in region (2) 

or about 
0

P and the directions '

i
x have the same meaning (Section 1); 'O  and 

the stresses depend on the position 
1

x along the bar. The tensor )(
A

 of the 

applied stresses in '

3

'

2

'

1
' xxxO  reads 
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

























n

n

n

A









00

0

0

)(
12

12

        (9) 

 

For a dislocation with Burgers vector )0,0,(b  lying indefinitely in the 
'

3
x

direction and displaced by hx 
'

2
 from the origin, the stress field is given at 

),,('
'

3

'

2

'

1
xxxx 


 by  

 
4

2'

2

2
'

1

'

1)1(

12

)(
)'(

r

hxxx
Cx





 ,  

 
4

2'

2

2
'

1

'

2)1(

11

)(3)(
)'(

r

hxxhx
Cx





 , 

 
4

2'

2

2
'

1

'

2)1(

22

)()(
)'(

r

hxxhx
Cx





 ,    

2

'

2)1(

33

)(
2)'(

r

hx
Cx


 


, 

0
)1(

23

)1(

13
           (10) 

 

2'

2

2
'

1

2
)( hxxr   and )1(2/   bC  where   is the shear modulus. For a 

dislocation with Burgers vector )0,,0( b  lying along '

3
x  and displaced by hx 

'

2
 

from the origin, the stress is  
 

4

2'

2

2
'

1

'

2)2(

12

))()((
)'(

r

hxxhx
Cx





 ;    



















32

21

2'

221

2
'

1

2

'

1)2(
2

)3()()(
)'(

i

iiii

ii

r

hxx

r

x
Cx 





, i =1, 2 and 3; 

0)'(
)2(

3
x

j


 , j = 1 and 2;        (11) 

 

ij  is the Kronecker delta.  

 

The crack analysis requires the determination of the equilibrium crack 

dislocation distribution 
i

D , relative displacement of the faces of the crack, 

crack-tip stress and crack extension force. Any point on the crack is given by 

),,(
'

3

'

1

'

2

'

1
xpxxxP

s
  with ax 

'

1
 and 0tan

2
 p . We ask the crack 

faces to be free of traction, this gives 
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













0

0

0

3132

2122

1112







p

p

p

        (12) 

 

ij
  stands for the total stress at any point ),,(

'

3

'

2

'

1
xxx  in the medium and is 

linked to 
i

D ; in (12), we are only concerned with the points of the crack faces. 

ij  is written as 

 
)2()1(

ijij

A

ijij
           (13) 

 

where 
A

ij
  are the ij- elements of matrix )(

A
 (9) and   

 

dxxDxxxxxxx
n

n

ij

a

a

n

ij
)(),,(),,(

'

3

'

2

'

1

)('

3

'

2

'

1

)(
 



   ( 1n and 2)   (14) 

 

here )( n

ij
 (n = 1or 2) is the stress field produced by a dislocation displaced by 

pxhx 
'

2
 from the origin with Burgers vector )0,0,(b or )0,,0( b  ((10) and 

(11)). Introducing the expressions for ij  in (12) , we obtain  

 
































0
)(

0
)(

)(

'

1

2

12

'

1

1

12

xx

dxxD
Cp

xx

dxxD
Cp

a

a

n

a

a

n





      (15) 

 

(15) forms the governing equations of our modelling. The corresponding 

solutions are well-known 

 

2
'

1

2

'

112'

11
)(

xa

x

C

p
xD

n









, 

2
'

1

2

'

112'

12
)(

xa

x

C

p
xD

n









       (16) 

with relative displacement 
i

  of the faces of the crack in the '

1
x  (i= 1) and '

2
x  

(i= 2) directions  
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2
'

1

212'

11

)(
)( xa

C

pb
x

n








 , 

2
'

1

212'

12

)(
)( xa

C

pb
x

n








       (17) 

 

 

III - CALCULATION RESULTS 

 

Below are presented expressions for the stress about the crack tip and crack 

extension force G2. We shall look for crack configuration at which G2 is 

maximum. This configuration would correspond to the natural configuration 

of the propagating crack; this is under this configuration that we shall apply 

the condition for crack propagation 2
2
G . The stresses ahead of the crack 

tip at point ),,(
'

3

'

1

'

2

'

1
xpxxxP

s
 , sax 

'

1
, as 0 , are given, for 

sufficiently small values of s, by the following relation :  

 

dxxDxpxxxs
n

n

ij

a

aan

ij
)(),,()(

'

3

'

1

'

1

)(

2

1

 


 



; sax 
'

1
   (18) 

 

with aa  . Restricting ourselves to the stresses involved in the calculation 

of the crack extension force, we obtain 

 

sp

KpKpp
s




2

1

)1(

)1()3(
)(

22

2

2

1

2

11








, 

sp

pKKp
s




2

1

)1(

))(1(
)(

22

21

2

12








, 

sp

KpKpp
s




2

1

)1(

)31()1(
)(

22

2

2

1

2

11








    (19) 

 

where  apK
n

)(
121




 and  apK
n

)(
122




; terms with 

i
K  are 

due to dislocation family i (i=1 and 2).  

 

The crack extension force can be calculated following a procedure described 

in [4]; we have also referred to this in a number of works [3,5]. This gives G2 

at ),,(
'

3

'

2

'

1
xpaxaxP

a
  as 

 



  Rev. Ivoir. Sci. Technol., 26 (2015)  76 - 90  86 

P. N. B. ANONGBA 

 
anna

Gpp
pE

l
PG 






2

12

2

122

2

2
)()(

)1(

)1(
)( 


   (20) 

 

The behaviour of 
a

G  as a function of p is as follows. 
a

G  is minimum at p= 0, 

increases up to a maximum at


 pp  and then decreases asymptotically to a 

value )(
a

G  as p tends to infinity; we have 

 4)1()1(
2

1 22


 nn
p  , 

 22

2
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where 
12

/ 
nn

 . The fracture stress 
f

 
12

 is obtained from 2
max


a

G  as  
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Where 
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E

t
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2
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IV - DISCUSSION 

 

We shall assume that 
n

  in our modelling (Figure 2) is given by the magnitude 

of '

11
 (6) that depends on the 

1
x - position along the specimen and value of '

2
x

along the axis 
0

CP (Figure 1). As a consequence, the various physical 

quantities derived in Section 3 depend on 
1

x and '

2
x . Under such conditions, 

what is the failure stress 
F

  in the bending of fracture specimens by terminal 

transverse load?  
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Fracture may well occur at different 
1

x - positions along the length of the 

specimen in Figure 1, due to pre-existing flaw for instance. Hence for fixed 

1
x , we may assume first (a) that 

F
  is given by (22) with highest 

n
  value 

corresponding to 2/
0

'

2
ex  . This corresponds to position 

)2/,0(
021

exxB   in Figure 1 for 0
1
x . We have 

00
/6)( eLB

n
      

(for 12/
3

00
elI  ) that is generally much larger than unity. We first discuss the 

behaviour of the crack about B. The crack inclination angle 

2
  with respect to 

the '

1
x - direction (Figure 2) (given by 




2
tan p (21)) takes about B for 

1
n

 , the simple form 
002

/)1(6)()1()(tan eLBB
n

 
 . With 

10/
00
eL , this gives 


89)(

2
B  that corresponds to a crack path not far 

from the 
2

x direction. Using (6) with 0
1
x , 

2

'

2
xx   and writing  

IxLSdxdx
n

/)1()1(/
20012

  , 

 

we obtain by integration 
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22

10)0(
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where 0)0(
2

x  in compression region (2) and 
000

SLV  is the volume of the 

specimen. (24) indicates that the crack path is in the form of an exponential 

about the wall in region (2). A complete crack shape about the wall may be a 

path parallel to 
2

Ox  for 0
2
x  and in the form of an exponential for 0

2
x  

with a beginning point somewhere below O (as shown schematically in     

Figure 1). A pre-existing flaw may promote failure out of the wall; again, the 

exponential path of the crack would be preserved there. The fracture stress 
f



(22) in bending by terminal load F (Figure 1) is proportional to the quantity 

t
 (23). This latter expression is nothing else than the stress at failure when a 

specimen with a  crack of half-length l is loaded in tension. When 1
n

 , 

(22) reduces to  
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f
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and in term of the bending moment 
f

MM  , 
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0
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          (26) 

 

It is important to stress that these relations are intimately related to the 

existence of a shear stress 
12

 . In presence of a shear stress, 
a

G (20) has a 

maximum from which is deduced 
f

 (22); however, in absence of a shear 

stress ( 0
12

 ) as we shall discuss, 
a

G  has no maximum with p and (22) 

(hence 25, 26) does not exist. This brings us to discuss the particular case of 

bending without shear stress. An example corresponds to the bending of a bar 

by terminal couple [1]; the bending moment 
c

MM  (4) is constant along the 

bar so that IxM
c

/
'

2

'

11
 (6). The crack extension force 

c
G

2
 in this situation is 

given by (20) with 0
12

 .  We have  
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This is the expression of the crack extension force at the tip of an inclined crack 

under compression and internal Poisson tension discussed by [3]. The factor 

)1/()(
222

pp   in (27) increases continuously with p from 2
 (p= 0) to a 

value limited by 1 (p large). In absence of shear stress, the inclined crack 

(Figure 2) tends to align parallel to the applied compression )(
n

  direction 

(see [3] and references therein). The natural configuration of the crack system 

corresponds to p= 0. Under such conditions, the relation 2
2


c

G  yields 
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Taking IeM
cn

2/
0

 , we have 
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I
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          (29) 

 

To compare with (26), we take 3/1 for isotropic materials and obtain 

fc
MM 3 ; this indicates that three times larger bending moment is required 

to fracture a specimen in bending by terminal couple. Other consideration (b) 

for 
F

  is to average (22) over specimen section; this yields 
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Doing the same thing with (28) gives a couple  
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4

e

I
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t
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that is twice the value (29). Considerations (a) and (b) above demand 

confrontation with experiments that will be the subject of separate works.  

 

The present modelling assumes a crack path perpendicular to the applied 

tension direction in tension regions of the fractured specimen and parallel to 

the applied compression in compression regions. This means that fracture 

specimens must have large dimensions in order that crack propagation over 

macroscopic distance is the controlling mechanism of failure. Crack nucleation 

would be internal. Fracture under boundary effects so frequently associated to 

small specimens may not be described by the present study. 

 

 

V - CONCLUSION 

 

In the present study, an analysis has been performed of the conditions of failure 

in a rectangular bar, horizontally in a wall at one end and under load about the 

other end, either by terminal transverse load or terminal couple. The specimen 

consists of two distinct parts (1) and (2) separated by a non-deformed (neutral) 

plane. Region (1) suffers tension and (2) compression. It is known from 

experiment that a crack propagating over macroscopic distances under tension, 

tends to align perpendicularly to the applied tension direction, whilst under a 

compressive stress, the equal crack would be directed along the compression 

direction. In the last orientation, this is the induced Poisson's tension , much 

smaller than the applied stress that is responsible for the opening of the crack 

faces. We are thus lead to consider two distinct crack extension forces 
1

G  and 

2
G pertaining to both regions. Because 

1
G  is much larger than 

2
G , this is under 

the condition 2
2
G that complete failure would take place. We then proceed 

to a calculation of 
2

G , using a model of a finite crack in an infinitely extended 

homogeneous medium, that permits us to describe a natural configuration of 

the crack under load and a relation between the failure stress and the 

dimensions of the specimen.  



  Rev. Ivoir. Sci. Technol., 26 (2015)  76 - 90  90 

P. N. B. ANONGBA 

This study allows to distinguish two types of applied loading : (1) flexion 

associated with shear (case of terminal transverse load) and (2) pure bending 

without shear (case of terminal couple). Three times larger bending moment at 

least is required to fracture the specimen in the latter applied loading condition.  
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