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ABSTRACT 
 

In this study, we consider two elastic solids (S1) and (S2), of infinite sizes, 

welded along a non-planar surface S in the form of a corrugated sheet; more 

specifically, with respect to a Cartesian coordinate system
i

x , the interface has 

the same sinusoidal shape
3

sin x
nn

  in the 
32

xx planes and is rectilinear 

in the 
21

xx planes. We investigate the elastic fields (displacement and stress) 

due to a dislocation lying on that interface at the origin and running indefinitely 

along the 
3

x direction. The approach used is to treat the elastic fields as the 

difference of two quantities : 1) the first corresponds to the elastic fields of a 

sinusoidal dislocation at the origin in an infinitely extended homogeneous 

medium and 2) the second satisfies the equilibrium equations with a 

discontinuity, when crossing the interface, identical to that given by the elastic 

fields of the sinusoidal dislocation from the change in the elastic constants on  

the passage from (S2) to (S1).  

 

This second quantity is set using Galerkin vectors whose components are 

expressed in the form of Fourier series and integrals. Then equations are written 

that reflect the continuity of the elastic fields at the crossing of the interface. 

These interface boundary conditions split into two distinct groups: those 

corresponding to a planar interface with a straight edge dislocation at the origin 

and those (in the linear approximation with respect to  , assuming  to be 

small) proportional to the sinusoid or its spatial derivative with respect to 
3

x . 

We then restrict our treatment by satisfying only to the boundary conditions 

associated with a planar interface with a straight edge dislocation.  
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The displacement and stress fields of an interface straight edge dislocation, thus 

obtained, reflect the presence of the Dirac delta function in the shear stresses 

on the interface. Finally, a comparison is made of our findings with those 

previously published on the same subject. 

 

Keywords : linear elasticity, interface dislocations, Galerkin vector, three-

dimensional biharmonic functions , Fourier forms, linear systems 

of equations 

 

 

RÉSUMÉ 
 

Une étude des champs élastiques de dislocations coins droites et 

sinusoïdales utilisant des vecteurs de Galerkin avec des composantes 

tridimensionnelles biharmoniques dans la forme de Fourier 
 

Dans la présente étude, on considère deux solides élastiques (S1) et (S2), de 

tailles infinies, soudés suivant une surface non plane ayant la forme d'une tôle 

ondulée; plus précisément, par rapport à un système de coordonnées        

cartésien 
i

x , l'interface a une forme sinusoïdale identique 
3

sin x
nn

  dans 

les plans
32

xx  et rectiligne dans les plans
21

xx . On étudie les champs élastiques 

(déplacement et contrainte) d'une dislocation couchée sur cette interface à 

l'origine et courant indéfiniment dans la direction
3

x . La démarche utilisée est 

de considérer les champs élastiques comme la différence de deux grandeurs : 

1) la première correspond aux champs élastiques d'une dislocation sinusoïdale 

dans un milieu homogène infiniment étendu et 2) la seconde satisfait aux 

équations d'équilibre avec une discontinuité, à la traversée de l'interface, 

identique à celle mesurée dans les expressions des champs élastiques de la 

dislocation sinusoïdale et qui résulte du changement des constantes élastiques 

au passage de l'interface, du solide (S2) vers le solide (S1).  

 

Cette deuxième quantité est définie à l'aide de vecteurs de Galerkin dont les 

composantes sont développées dans la forme de Fourier. On pose ensuite des 

équations traduisant la continuité des champs élastiques à la traversée de 

l'interface. Ces conditions aux bords pour l'interface se répartissent en deux 

groupes distincts: 1) celles qui correspondent à une interface plane avec une 

dislocation coin droite à l'origine et 2) celles qui (dans l'approximation linéaire 

par rapport à  , supposé petit) sont proportionnelles à la sinusoïde ou à sa 

dérivée spatiale par rapport à 
3

x . Nous restreignons alors notre traitement en 

satisfaisant uniquement les conditions aux bords  associées à une interface 

plane avec une dislocation coin droite.  
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Les champs élastiques d'une dislocation d'interface coin droite, ainsi obtenus, 

rendent compte de la présence de la fonction delta de Dirac dans les contraintes 

de cisaillement sur l'interface. Enfin, une comparaison est faite de nos résultats 

avec ceux publiés antérieurement sur le même sujet. 

 

Mots-clés : élasticité linéaire, dislocations d'interface, Vecteur de Galerkin, 

fonctions biharmoniques à trois dimensions, expansions en séries 

de Fourier, systèmes d'équations linéaires  

 

 

I - INTRODUCTION 
 

Consider a pair of different solids S1 and S2, of infinite sizes, welded along a 

non-planar sinusoidal surface S  defined by the running point 

),sin,(
3321

xxxxP
nnS

 , in such a way that S1 and S2 occupy the regions 

32
sin xx

nn
 and 

32
sin xx

nn
 , respectively. The situation is shown in the 

Figure 1 where S1 and S2 are confined for illustration purpose in a 

parallelepiped of finite sizes.  

 

 
 

Figure 1 : Two elastic mediums (1) and (2) welded along a non-planar 

sinusoidal surface and containing an interface sinusoidal 

dislocation at the origin. The dislocation lies in the 
32

xOx plane 

and runs indefinitely  in the 
3

x direction. 
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The present study aims at providing expressions for the displacement and stress 

fields of sinusoidal dislocations, lying on that interface at the origin, extending 

indefinitely in the 
3

x direction and spreading in the 
32

xOx plane in the 

sinusoidal form 
3

sin xA
nnn

 . The dislocation is edge on average for 

Burgers vectors in the 
1

x  and 
2

x  directions and screw for a Burgers vector in 

the 
3

x direction. In the present report, we restrict ourselves to a Burgers vector 

)0,,0( bb 


 in the 

2
x direction. Using the results of such a study is at several 

levels: 1) the elastic fields due to an arbitrary form of interface dislocation in 

32
xx  planes with the same Burgers vector can be derived by superposition 

(Fourier series expansion ); 2) a non-planar large interface crack loaded in 

tension in the 
2

x direction and propagating in the 
1

x direction may be 

represented mathematically by a continuous array of long non-straight 

dislocations with infinitesimal Burgers vectors )0,,0( bb 


. Denote by )( m

u


 

and )(
)(

m
  ( 2and1m ) the displacement and stress fields in the solid (m) due 

to the interface sinusoidal dislocation. We assume that the following 

description applies : 

 

 )( m
u


 and )(
)(

m
 are continuous at the crossing of the interface 

 

)()(
)2()1(

SS
PuPu


  and )()()()(

)2()1(

SS
PP        (1) 

 

 Far from the  dislocation and the interface, the elastic fields in the 

medium  (m) correspond to those of a sinusoidal dislocation in an 

infinitely extended homogeneous solid with the equal elastic constants, 

that we denote by )( m
u


 and )(
)(

m
  , hence 

 









)()(

)()(

)()(
mm

mm
uu





         (2) 

 

when one moves far away in the 
2

x direction.  

 The elastic fields may be expressed in the form  

 

Wmmm

Wmmm
uuu

)()()(

)()()(

)()()(  





 

        (3) 

 

where Wm
u

)(
and Wm )(

)( satisfy the equations of equilibrium and posses 

the properties that follow.  
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)()(
)1()2()1()2(

S

WWW

S
PuuuuuPu






 
 

)()()()()()()()(
)1()2()1()2(

S

WWW

S
PP  

 ,  (4) 

 

these conditions ensure the continuity of the elastic fields across the 

interface. 

 Wm
u

)(
and Wm )(

)( cancel far from the dislocation and interface; this 

means that 
 

0)(

0

)(

)(





Wm

Wm
u





          (5)  

 

when 
2

x ; this ensures the veracity of condition (2) above.  

The elastic fields )( m
u


and )(
)(

m
 thus obtained are expected to be valuable 

representations of the physical situation illustrated in the Figure 1. The 

associated Wm
u

)(
and Wm )(

)( are investigated with the help of Galerkin vectors 

and corresponding equations of equilibrium. The methodology in Section 2 is 

essentially as follows: in Section 2.1, )(
S

Pu





 and )()(
S

P


   are expressed 

in a Fourier series form that involves terms with ).exp( xki


 , with 

),,(
321

kkkk 


 (

i
k  real numbers) and ),,(

321
xxxx 


vector position; in Section 

2.2, a Galerkin vector with components involving ).exp( xki


 is considered. The 

associated elastic fields also consist of terms proportional to ).exp( xki


. These 

are managed in the equal Fourier series form. Then equations of the type (4) 

can be posed. In Section 3, the search for the appropriate elastic fields          
Wm

u
)(

and Wm )(
)( is initiated restricting ourselves, in the present paper, to the 

interface straight edge dislocation. A complete study requires additional works; 

this will be the subject of a separate paper. In Section 4, the calculation results are 

discussed and confronted to previous studies. A conclusion is made in Section 5.  

 

 

II - METHODOLOGY  
 

II-1. Interface boundary values carried by the elastic fields of a sinusoidal 

dislocation in an homogeneous solid  
 

The elastic fields due to a sinusoidal edge dislocation ( )0,,0( bb 


) lying in the 


32

xOx plane in the sinusoidal form 
33

sin)( xxA
nnn

  have been provided 

in infinite series forms by [1].  
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In a similar way as in our previous studies [2 - 6], we shall assume 
n

 small and 

limit the elastic solutions up to terms of first order with respect to 
n

 . In this 

way, the elastic fields consist of two terms:  

 









)())(0()(

)())(0()(

)()()(
mAmm

mAmm

n

nuuu





      (6)  

 

where ))(0( m
u


 and ))(0(
)(

m
  are of zero order with respect to 

n
 corresponding 

to the fields of a straight edge dislocation; )( mA
nu


 and )(

)(
mA

n  are 

proportional to the sinusoid )(
3

xA
n

 or to its spatial derivative 
3

/ xA
n

 . 

 

Our purpose here is to write down the differences 
 u


 and 

 )(   (4) on 

crossing the interface at arbitrary point ),sin,(
3321

xxxxP
nnS

 . We use the 

notation 
2

x  (  small) and take the MacLaurin series expansions of the 

elastic fields up to terms of first order with respect to  ; this means that  

 

 ),0,(),0,(),,(
31

2

31321
xx

x

u
xxuxxxu













, 




 ),0,(
)(

),0,()(),,()(
31

2

31321
xx

x
xxxxx








  . (7) 

 
)( m

u


 and )(
)(

m
  are taken from our previous works [1, 4,5]; we obtain (

i
u  is 

the i-component of vector u


 and 
ij

 the ij-element of the stress matrix )( ; i, 

j= 1 to 3) 

 



n

A

iii
uuxxxu

)0(

321
),,(   

 


 n
A

ijijij
xxx 

)0(

321
),,(  

as 

1

1

1

)0(

1

11
1

8
ln

4
dke

k

bC
x

bC
u

xik












  

  









1
22

1

2

1

101

1

1

11

84
dke

k

kAbC
KKx

x

AbC
u

xik

n

n

n

nnA
n



 





  
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







11

1

)0(

2

11)sgn(
84

dkek
ibC

x

bC
u

xik








  

1
22

1

1

112

11

8
)sgn(

4
dke

k

kAibC
Kx

AbC
u

xik

n

nnnA
n








 





  

 

0
)0(

3



u  











1
22

1

1

3

11

3

3

11

8
)sgn(

4
dke

k

k

x

AibC
Kx

x

AbC
u

xik

n

nnnA
n









 





  

 

11

1

12)0(

11

11)sgn(2 dkekQ
x

CC xik

b 









   




















 







1

1

2

1

2

0

1

12

11

)6(
3

)(

x

Kx
K

x

ACC
n

n

nnA
n  






1

22

1

22

11 11
)23(

2 dke

k

kk
AQ

xik

n

n

nb




 





 

 

11

1

12)0(

22

11)sgn(2 dkekQ
x

CC xik

b 









   

























1

1

0

1

12

22

2)(

x

K
K

x

ACC

n

nnA
n  


1

22

11

112 dkekkAQ
xik

nnb
 





 

 

11

1

)0(

33

11)sgn(4
8

dkekQ
x

iQ xik

c

c








   




































1112

2

1

0

1

33
)(

16
8 KxCC

x

iQ
KiQ

x

A

n

c

nc

nnA
n  






1

22

1

22

11 11
))2(2(

2 dke

k

QQkQk
A

xik

n

nbcc

n




 





 

 


112

1

12)0(

12

112 dkekiQ
x

CC xik

b 









  
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











 




1

112

012

)(
4

x

KCC
KiQA

ncnn

A
n   

1
22

1

22

1 11
)(

2 dke

k

QQkQ
iA

xik

n

ncbb

n








 





 

 

0
)0(

13



  














 









1

1

0

3

13

)2(
4

x

KQQ
KQ

x

A
i

cb

nb

n

n

A
n  






1

22

1

22

1

3

11
)()2(

2 dke

k

QQkQQ

x

A
i

xik

n

nbcbcn








 





 

 

0
)0(

23



  

1
22

1

1

3

11

3

23

112)sgn(4 dke

k

k

x

A
QKx

x

A
iQ

xik

n

n

c

n

nc

A
n













 





   (8) 

where  

 

)]1/(1)1/(1[
21




C ,   4/)(
12

CCiQ
b

 ,  

4/)(
1122

CCiQ
c

  ,   )1(2/
mmm

bC   ; 

 

i
K  is the ith-order modified Bessel function with argument 

1
x

n
  and 

111
/)sgn( kkk  ; 

m
  and 

m
 are shear modulus and Poisson's ratio. In the 

various expressions in (8), constant terms are omitted.  

 

II-2. Galerkin vectors and interface boundary conditions 
 

A Galerkin vector )( xV


is a vector whose components are biharmonic spatial 

functions ( 0 V


;   Laplace operator) in order to satisfy the equilibrium 

equations with zero body forces. Then the associated displacement u


 is 

expressed as  

 

).()1(22 VVu


         (9)  

 

where   and  are shear modulus and Poisson's ratio respectively; 


is the 

operator nabla, )/,/,/(
321

xxx 


.  



    Rev. Ivoir. Sci. Technol., 25 (2015)  34 – 55 42 

P. N. B. ANONGBA 

The stress field )(  is obtained from the displacement u


 by partial 

differentiation with respect to coordinates 
i

x . The matter is treated in a number 

of books (see [7-11], among many others). For the present problem, we arrive 

at Galerkin vectors with only one non-zero 
2

x component, arranged in the 

form 

 
xkixki

exkekxV
  .

22

.

22
)()()(         (10) 

 

under the condition 0
2

3

2

2

2

1

2
 kkkk


 that ensures the biharmonicity of 

2
V

For 
2

V  to cancel far from the interface, we write  

 
2

3

2

1

1)(

22
)1( kkikk

mm


         (11)  

 

with 1m  when 
32

sin xx
nn

 (half-space 1) and 2m  when 

32
sin xx

nn
 (half-space 2). We use the notations  

 

),,(
3

)(

21

)(
kkkk

mm



, )(

)(

2

)(

2

mm
k


  , )(

)(

2

)(

2

mm
k


  ; 

 

hence for half-space 1 (
32

sin xx
nn

 ), solid (1) 

 
xkixki

exexVxV
 .

2

)1(

2

.)1(

2

)1(

22

)1()1(

)()(    

 

and for half-space 2 (
32

sin xx
nn

 ), solid (2) 

 
xkixki

exexVxV
 .

2

)2(

2

.)2(
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The elastic fields corresponding to 
2

V  (10) may be first calculated starting with 

(9); then, more general forms Vm
u

)(
 and Vm )(

)(  are constructed from the 

previous ones by superposition over 
1

k  and 
3

k  (here the superscript V is just a 

notation, not to be confused with V


). For Vm

u
)(

 and Vm )(
)( to conform with 

)( m
u


 and )(
)(

m
 (6), the summation over 

1
k  is continuous and that over 

3
k is 

discrete. 
3

k  takes three values: 
n

 , 0, 
n

 . The fields corresponding to 0
3
k  

are denoted Vm
u

))(0(
 and Vm ))(0(

)( and terms associated with 
n

k 
3

 and 
n

  

are merged to form expressions denoted VmA
nu

)(
 and VmA

n
)(

)( ; this is made 

possible by requiring that  
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In Equations (13 a to j) above, )(
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Next, we are concerned with satisfying boundary conditions restricting 

ourselves to conditions (13).  
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This leads to the displacement and stress fields due to an interface edge 

dislocation ( )0,,0( bb 


) parallel to the 

3
x direction at the origin; the interface 

is the 
31

xOx plane. The elastic fields (to first order in )(
3

xA
n

) for the 

sinusoidal edge dislocation require additional works using (14). This will be 

the subject of a separate paper.  

 

 

III - CALCULATION RESULTS 

 

III-1. Partial elastic fields associated with interface boundary conditions 

 

Three distinct couples of values for ),(
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None of these couples satisfies the entire conditions (13). For each couple, we 

display below the associated elastic fields Vm
u
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)( defined in 
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It can be verified that Vm

b

mm

b
uuu

))(0(

1

))(0(

1
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1


 are not identical with m on the 

interface; but the stresses Vm
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factor 2/)(
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where )(
1

x is the well-known Dirac delta function in Vm

c

))(0(

12
  when 0

2
x . 

 

III-2. Displacement and stress fields due to an interface straight edge  

          dislocation   

 

III-2-1. Boundary conditions  

 

We define the elastic fields )(
))(0(

xu
m 

 and )()(
))(0(

x
m 

 as 
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

    
 

Wmmm ))(0())(0())(0(
)()()(  

       (19) 
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Again ))(0( m
u


and ))(0(
)(

m
 are due to a straight edge dislocation                               

( )0,,0( bb 


) parallel to  the 

3
x direction at the origin in an infinitely extended 

homogeneous medium (m) (see Anongba[1, 4, 5]); Vm
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))(0(

to


 and Vm
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))(0(

to
)( are 

given in (16) to (18); )(

to

m

ca
  are real to be determined by the requirement that 

the elastic fields satisfy the following conditions :  
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 is continuous across the interface (actually we shall write this 

condition for the 
1

x component). 

 bdu
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2
 for a closed contour in 

21
xx encircling the dislocation. We 

may take for  a square of side a centred at the origin and travelled in 
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x direction.  

 The stresses ))(0( m
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  are continuous at the crossing of the interface, i.e. 
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 )(
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xu
Wm 

 vanish far from the interface (i.e. when 
2

x ). 

 

It can be seen that all the stresses involved in ))(0(
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  and Vm
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)(  vanish at 

infinity. Under such conditions above, )(
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 and )()(
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x
m 

 correspond 

to an interface straight edge dislocation. Next, we express the quantities 

involved in the conditions above and proceed to satisfy these.  
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where all 
i

e are constant with 2and1m ;for the various stress conditions 

above, we restrict ourselves to terms with the spatial function )/1(
1

x  only.   

 

III-2-2. Satisfying boundary conditions  
 

We are concerned with finding the appropriate expressions for )(

to

m

ca
 that satisfy 

the boundary conditions (21). We first recognized that ))(0(
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m
 (19) takes on the 

interface the very simple form involving only )( m

c
  
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This can be arrived at from different routes involving different equations in 
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3
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We have  
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In summary, )(
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  are determined by using (23), (27 and 28).  

 

III-2-3. Perfect elastic fields 

 

The elastic fields due to an interface straight edge dislocation ( )0,,0( bb 
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parallel to  the 
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x direction at the origin, are given in (19 and 20) with values 
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special values taken on the interface by quantities ))(0(

12

m
  and ))(0(

22

m
  that are 

frequently involved in the analyses of the propagation of the interface crack 

loaded in tension.  
))(0(

12

m
  is obtained from (22 and 23) as  



53   Rev. Ivoir. Sci. Technol., 25 (2015)  34 - 55 

P. N. B. ANONGBA 

 

 

 
)(

)43()43(

)21()21(2
),0,(

1

1

2

22

2

1

122121

321

))(0(

12
x

b
xxx

m










 , (29) 

 

2and1m . This quantity is unchanged by inverting the elastic constants. 

From (21), ),0,(
321

))(0(

22
xxx

m
  is first written as 

 

1

3

321

))(0(

22
),0,(

x

e
xxx

m
 .       (30)  

 

The calculation can be performed with m=1. Introducing in (30) the value of 

)2(
)1(

1

)1(

1 bbaa
iQiQCC   taken from (24) and making use of the value of 

c
  

(23), we obtain 

 

eD

uN
e 

3
         (31)  

 

  


321

2

2121

2

2212

2

112121
4)()1()1(4 aaabuN   

 

  
2121211

2

22

2

121
)1()1()43()43()(  eD  

 where 

 
2

21211
4  


a ; 2

12122
4  


a , 

2

2

1

2

21

2

2

2

13
 


a . 

 

3
e  (31) is unchanged by inverting the elastic constants.  

 

 

IV - DISCUSSION 

 

Expressions for the displacement and stress fields of interface straight edge 

dislocations with their associated Airy stress functions have been given 

[12,13]. In the geometry of the Figure 1, the calculated shear stress 

),0,(
32112

xxx   is zero on the interface for an edge dislocation with Burgers 

vector )0,,0( bb 


perpendicular to the interface. Later on, [14] has stressed 

that this shear stress contains a term proportional to the Dirac delta function; 

this result has been incorporated in a number of analyses of the propagation of 

the interface crack under load [15-18].  

Incorporating a Dirac delta function in the value of the shear stress on the 

interface is a clear indication that the elasticity solutions given by [12] are 
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partial. In the present study, a Dirac delta function is present in the complete 

elastic fields (Section 3.2.3) and pertains to the partial elastic fields Vm

c
u

))(0(

Vm

c

))(0(
)(  only (see (18), Section 3.1). This suggests that the results of the 

present study are potentially more general; however, discrepancies between our 

expressions for ),0,(
321

))(0(

12
xxx

m
  (29) and ),0,(

321

))(0(

22
xxx

m
  (30 and 31) 

and those given below by [16] are observed. In the geometry of the Figure 1, 

their results are (solid S1): 
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Their shear stress )1(

12
  changes sign on inverting the elastic constants indicating 

that it is discontinuous on crossing the interface from solid S1 ( )1(

12
 ) to solid 

S2 ( )2(

12
 ). In contrast our result for ))(0(

12

m
  (29) is continuous at the crossing of 

the interface. This indicates an essential difference between the interface 

boundary conditions in both studies. Their )1(

22
  above is continuous across the 

interface like our value (30 and 31). A step in the road toward the elastic fields 

due to interface sinusoidal edge dislocations (Figure 1) requires satisfying 

boundary conditions involving the interface boundary conditions (14) 

corresponding to linear expressions with respect to the perturbation )(
3

xA
n

. 

This will be the subject of a separate paper.  

 

 

V - CONCLUSION  
 

In the present study, Galerkin vectors have been used (Section 2.2) and 

associated interface boundary conditions have been displayed. These 

conditions can be decomposed into two groups: (1) the first group corresponds 

to a planar interface with a straight edge dislocation at the origin (13); (2) the 

second group corresponds to terms proportional to the sinusoid or its spatial 

derivative with respect to 
3

x  in the elastic fields expressed to first order with 

respect to the perturbation 
33

sin)( xxA
nnn

 (14). Satisfying both boundary 

conditions leads to terms of first order with respect to 
n

  in the elastic fields 

of a sinusoidal edge dislocation (see Figure 1).  

In the present paper, we have restricted ourselves to satisfying (13) only. 

Expressions of the displacement and stress fields of interface straight edge 
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dislocation have been thus obtained. Our results contain the Dirac delta 

function in the shear stresses on the interface. We have also compared our 

findings with those previously published on similar problems.  
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