Rev. Ivoir. Sci. Technol., 25 (2015) 34 - 55 34
ISSN 1813-3290, http.//www.revist.ci

A STUDY OF THE ELASTIC FIELDS OF INTERFACIAL EDGE
DISLOCATIONS (STRAIGHT AND SINUSOIDAL) USING
GALERKIN VECTORS WITH THREE-DIMENSIONAL
BIHARMONIC FUNCTIONS IN FOURIER FORMS

P.N. B. ANONGBA

U.F.R. Sciences des Structures de la Matiere et de Technologie, Université
F.H.B. de Cocody, 22 BP 582 Abidjan 22, Cote d’Ivoire

* Correspondance, e-mail : anongba@yahoo.fr

ABSTRACT

In this study, we consider two elastic solids (S1) and (S2), of infinite sizes,
welded along a non-planar surface S in the form of a corrugated sheet; more
specifically, with respect to a Cartesian coordinate system x_, the interface has

the same sinusoidal shape¢ = ¢ sin «, x, inthe x,x, — planes and is rectilinear

in thex,x, - planes. We investigate the elastic fields (displacement and stress)

due to a dislocation lying on that interface at the origin and running indefinitely
along the x, - direction. The approach used is to treat the elastic fields as the

difference of two quantities : 1) the first corresponds to the elastic fields of a
sinusoidal dislocation at the origin in an infinitely extended homogeneous
medium and 2) the second satisfies the equilibrium equations with a
discontinuity, when crossing the interface, identical to that given by the elastic
fields of the sinusoidal dislocation from the change in the elastic constants on
the passage from (S2) to (S1).

This second quantity is set using Galerkin vectors whose components are
expressed in the form of Fourier series and integrals. Then equations are written
that reflect the continuity of the elastic fields at the crossing of the interface.
These interface boundary conditions split into two distinct groups: those
corresponding to a planar interface with a straight edge dislocation at the origin
and those (in the linear approximation with respect to¢, assuminge to be

small) proportional to the sinusoid or its spatial derivative with respect to x, .

We then restrict our treatment by satisfying only to the boundary conditions
associated with a planar interface with a straight edge dislocation.
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The displacement and stress fields of an interface straight edge dislocation, thus
obtained, reflect the presence of the Dirac delta function in the shear stresses
on the interface. Finally, a comparison is made of our findings with those
previously published on the same subject.

Keywords : linear elasticity, interface dislocations, Galerkin vector, three-
dimensional biharmonic functions , Fourier forms, linear systems
of equations

RESUME

Une étude des champs élastiques de dislocations coins droites et
sinusoidales utilisant des vecteurs de Galerkin avec des composantes
tridimensionnelles biharmoniques dans la forme de Fourier

Dans la présente étude, on considere deux solides élastiques (S1) et (S2), de
tailles infinies, soudés suivant une surface non plane ayant la forme d'une téle
ondulée; plus précisément, par rapport a un systtme de coordonnées
cartésien x_, l'interface a une forme sinusoidale identique ¢ = £ sin «_x, dans

les plans x, x, et rectiligne dans les plansx,x, . On étudie les champs élastiques

(déplacement et contrainte) d'une dislocation couchée sur cette interface a
I'origine et courant indéfiniment dans la direction x, . La demarche utilisée est

de considérer les champs élastiques comme la différence de deux grandeurs :
1) la premiére correspond aux champs élastiques d'une dislocation sinusoidale
dans un milieu homogeéne infiniment étendu et 2) la seconde satisfait aux
équations d'équilibre avec une discontinuité, a la traversée de l'interface,
identique a celle mesurée dans les expressions des champs élastiques de la
dislocation sinusoidale et qui résulte du changement des constantes élastiques
au passage de l'interface, du solide (S2) vers le solide (S1).

Cette deuxiéme quantité est définie a I'aide de vecteurs de Galerkin dont les
composantes sont développées dans la forme de Fourier. On pose ensuite des
équations traduisant la continuité des champs élastiques a la traversée de
I'interface. Ces conditions aux bords pour l'interface se répartissent en deux
groupes distincts: 1) celles qui correspondent a une interface plane avec une
dislocation coin droite a I'origine et 2) celles qui (dans I'approximation linéaire
par rapport a ¢, supposé petit) sont proportionnelles a la sinusoide ou a sa

dérivee spatiale par rapport a x,. Nous restreignons alors notre traitement en

satisfaisant uniquement les conditions aux bords associées a une interface
plane avec une dislocation coin droite.
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Les champs élastiques d'une dislocation d'interface coin droite, ainsi obtenus,
rendent compte de la présence de la fonction delta de Dirac dans les contraintes
de cisaillement sur l'interface. Enfin, une comparaison est faite de nos résultats
avec ceux publiés antérieurement sur le méme sujet.

Mots-clés : élasticité linéaire, dislocations d'interface, Vecteur de Galerkin,
fonctions biharmoniques a trois dimensions, expansions en séries
de Fourier, systemes d'équations linéaires

I - INTRODUCTION

Consider a pair of different solids S1 and S2, of infinite sizes, welded along a
non-planar sinusoidal surface S defined by the running point
P, (x,,x, = £ sin x x,,x,), INsuch a way that S1 and S2 occupy the regions
x, > & sin x x,and x, < £ sin « x,, respectively. The situation is shown in the
Figure 1 where S1 and S2 are confined for illustration purpose in a
parallelepiped of finite sizes.

Figure 1 : Two elastic mediums (1) and (2) welded along a non-planar
sinusoidal surface and containing an interface sinusoidal
dislocation at the origin. The dislocation lies in the ox ,x, - plane

and runs indefinitely in the x, - direction.
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The present study aims at providing expressions for the displacement and stress
fields of sinusoidal dislocations, lying on that interface at the origin, extending
indefinitely in the x, - direction and spreading in the ox,x, - plane in the

sinusoidal form A = ¢ sin « x,. The dislocation is edge on average for
Burgers vectors in the x, and x, directions and screw for a Burgers vector in
the x, — direction. In the present report, we restrict ourselves to a Burgers vector
b = (0,b,0) inthex, - direction. Using the results of such a study is at several
levels: 1) the elastic fields due to an arbitrary form of interface dislocation in
x,x, planes with the same Burgers vector can be derived by superposition
(Fourier series expansion ); 2) a non-planar large interface crack loaded in
tension in the x, - direction and propagating in the x, - direction may be
represented mathematically by a continuous array of long non-straight
dislocations with infinitesimal Burgers vectors b = (0,b,0) . Denote by ™
and (o)™ (m =1and 2 ) the displacement and stress fields in the solid (m) due

to the interface sinusoidal dislocation. We assume that the following
description applies :

e (‘™ and ()™ are continuous at the crossing of the interface
U (P =u®(pry) and (6)(Py) = (o) ¥ (P,) 1)

e Far from the dislocation and the interface, the elastic fields in the
medium (m) correspond to those of a sinusoidal dislocation in an
infinitely extended homogeneous solid with the equal elastic constants,
that we denote byu ™~ and (o)™~ , hence

J(m) N l](m)oc
)

()™ = ()™

when one moves far away in the x, - direction.
e The elastic fields may be expressed in the form

Gm Z g me= _ g mw
©)

()" = ()™~ ()™

where ¢ ™" and (&)™" satisfy the equations of equilibrium and posses
the properties that follow.
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—~ (2)w —~ (1)

. —~ (2 ~ ~
AUQ(PS)EU — 0 :u()w_u(l)w w

= AU (Ps)

(2)o (1) (2)w 1w

(Ac) (P =(a)?" = ()Y = ()P = ()™ =(ac)" (P), (4)

these conditions ensure the continuity of the elastic fields across the

interface.
e ™" and(s)™" cancel far from the dislocation and interface; this
means that
a™ 50
) (5)
()™ 50

when |x,| - = ; this ensures the veracity of condition (2) above.

The elastic fields u‘™ and(s)™ thus obtained are expected to be valuable
representations of the physical situation illustrated in the Figure 1. The
associated u ™" and (s )™" are investigated with the help of Galerkin vectors
and corresponding equations of equilibrium. The methodology in Section 2 is
essentially as follows: in Section 2.1, ad~(p,) and (ao)” (p,) are expressed

in a Fourier series form that involves terms with exp( ik.x) , With

k = (k,.k,.k,) (k, realnumbers)and x = (x,, x,, x,) Vector position; in Section
2.2, a Galerkin vector with components involving exp( ik .x) is considered. The

associated elastic fields also consist of terms proportional to exp( ik.x) . These

are managed in the equal Fourier series form. Then equations of the type (4)
can be posed. In Section 3, the search for the appropriate elastic fields
a ™" and(o)™" is initiated restricting ourselves, in the present paper, to the
interface straight edge dislocation. A complete study requires additional works;
this will be the subject of a separate paper. In Section 4, the calculation results are
discussed and confronted to previous studies. A conclusion is made in Section 5.

Il - METHODOLOGY

I1-1. Interface boundary values carried by the elastic fields of a sinusoidal
dislocation in an homogeneous solid

The elastic fields due to a sinusoidal edge dislocation (b = (0,b,0) ) lying in the
ox ,x, — plane in the sinusoidal form A (x,) = £ sin « x, have been provided
in infinite series forms by [1].
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In a similar way as in our previous studies [2 - 6], we shall assume ¢_small and
limit the elastic solutions up to terms of first order with respect to ¢ . In this
way, the elastic fields consist of two terms:

— £ —~ (0 ® —~ A E3
u(m) — LI( )(m) +u n(m)

(6)

(O_)(m)sO _ (O_)(O)(m)so + (O_)An(m)w

where ¢ ™~ and (¢ )™~ are of zero order with respect to ¢ _corresponding

to the fields of a straight edge dislocation; o*™~ and (s)*™~ are
proportional to the sinusoid A (x,) or to its spatial derivative oA /ox, .

Our purpose here is to write down the differences au” and (ao)” (4) on
crossing the interface at arbitrary point p_(x,, x, = & sin «_x,,x,) . We use the
notation x, = ¢ (¢ small) and take the MacLaurin series expansions of the
elastic fields up to terms of first order with respect to ¢ ; this means that

oAU ”

AUT (X, X, = &, %) = Au " (x,,0,%,) + (x,,0,%,)¢ ,
ox,
(Ao) (X, X, = &,%) = (Ao) ™ (%,,0,x,) + o(ac) (x,,0,x,)¢ . (7)
oX

2

u™” and (o)™~ are taken from our previous works [1, 4,5]; we obtain (u, is
the i-component of vector ¢ and o, the ij-element of the stress matrix (o) ; i,
j=1t03)

© (0)w A,
Au, (X, X, =¢&,%x,) = Au, + AU,

AO';(XI,X2 =&,X,) = Aai(jo)m + Az)'ijA"00
as
- _ BC, bC, © 1,
= In |x —e tdk
bl I
bC x A bC A k.’ .

Aul” e X K.+ K = L r L e " gk

1 47[|X1| (K'" 1| 0 1)9“: 872' J‘ kz N Kz 1§
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0

bC ibC .
AUl = e o - J' sgn( k,)e"dk &
4rx, 8z -
p bC x A, ibC A, k, o,
Au,"" = - ——"—"sgn( x,)K, = [ ek,
A 8z - \/k12 + i’
N
Ayt bC ,x, OA, s ibC , oA, k, ot g
u,"" = - —sgn( X, )K,& = J' e £
4z 0OX, 8z 0x, klz + i’
c,-cC - ox
Aal(lo)” = —2——==-20Q, J‘ sgn( k,)e kl tdk
X
1 -

2 2
1;1\"30:(C2—C1)KHA“ 3KnK0+(6+K"X1)K1
X, x|

Ao

©

k, (k. + 2K )

= 2Q,A, Jﬁeikixldklg
C 1“(1 + K,
c,-¢ .
Ao V" = =2 L =-2Q, J'sgn( k,)e'dk,
Xl —o0
B} C,-C)x A 2K
AGZAZ" :——( : BLPL KnK0+—1 &
X, x|

= —2Q,A, [ kyyfk] + xye" k&

©

© 8|QC ik, x
Aaa(so) = - " = -4Q, J'sgn( kl)ek“dk1

1 -

16|)i(Q|° +x2(C, - C1)|X1|]K1
1

Ao KnAn( .
Ao, =- 3 L8|Q JL K+
1

o 2

k,(2Q k,” + (2Q_ + %)
—2A 1( Qc 1 ( QC Qb) n)elklxldk 5
n 2 2 1
) k1 +Kn
© c,-C . K ik, x
Ao = %5 = 2iQ, [ [k,[e" dk ¢
1 —%
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Ao

C,-C,)K
Ao, =KnAn(4iQCKnKO——( 2 1) l]

2 2
Qbkl + (Qb - Qc)Kn Eik1X1dk1

:—2iAnj

2 2
Cw \/k1 + K,

=0

(0)o
13

. BA 2Q - K
Aoy :4iKn—aXn{QbKnK0+—( SH 1]5

Ao

3

oA, - 2Q,)k/ + -Q, )k |
_ 2| n I (Qc Qb) 1 (Qc Qb) n elk1X1dk1§
axs . \/|(12+Kn2

(0)
23

Ao =0

Aw . oA, 0A,
Ao, =-4iQ x, —son( x,)K, = -2Q
ox

[ =
23 c

2 2
OX, 3w \/k1 + K

e"“dk, (8)
where

C =[Al-v)-1K1-v,)], Q,=i(C,-C,)/4,
Q,=i(v,C,-v,C)/4, C_ =bu, I2z@-v);

K, is the ith-order modified Bessel function with argument «, |x,| and

son( k,) =k, /|k,|; «, and v_ are shear modulus and Poisson's ratio. In the
various expressions in (8), constant terms are omitted.

11-2. Galerkin vectors and interface boundary conditions

A Galerkin vector v (x) is a vector whose components are biharmonic spatial

functions (aa v = 0;a Laplace operator) in order to satisfy the equilibrium

equations with zero body forces. Then the associated displacement o is

expressed as

24l = 2(L—v)AV -V (VV) 9)

where . and v are shear modulus and Poisson's ratio respectively; v is the
operator nabla, v = (2 /0x,,0/0x,,010x,) .
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The stress field (o) is obtained from the displacement ¢ by partial
differentiation with respect to coordinates x, . The matter is treated in a number

of books (see [7-11], among many others). For the present problem, we arrive
at Galerkin vectors with only one non-zero x, - component, arranged in the
form

V,(X) = a, (k)"  + 5, (k)x,e™” (10)

under the condition k > = k2 + k? + k2 = o thatensures the biharmonicity of v,
For v, to cancel far from the interface, we write

k, = k™ = (-1 " ik + k] (11)

with  m =1 when «x, > ¢ sin « x,(half-space 1) and m =2 when
x, < & sin «_x, (half-space 2). We use the notations

k™= (ky kg™ k) @) = a, (k™) B = B, (M)

hence for half-space 1 (x, > £, sin «_x, ), solid (1)

Sy oy W,z —@ kM3 ) ik X
V,(x) =V, (X)=a, e + B, X,e

and for half-space 2 (x, < £_sin «_x, ), solid (2)

ik 3

X)) = (2) ;2N _ —(2) X ()
V,(x) =V, (X)=a, e + B, X,e

ik® %

The elastic fields corresponding to v, (10) may be first calculated starting with
(9); then, more general forms o™ and (&)™ are constructed from the
previous ones by superposition over k, and k, (here the superscript V is just a
notation, not to be confused with M) For ¢ and (+)™" to conform with

u™” and (o)™~ (6), the summation over k, is continuous and that over «, is
discrete. k, takes three values: - «, , 0, «, . The fields corresponding to k, = o
are denoted v “*™" and (o) ™" and terms associated with k, = —«_ and «,

are merged to form expressions denoted ¢ *‘™" and (o)*™" ; this is made
possible by requiring that
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OTz(m)(Kn) — 7072(m)(7’(n), ﬁ_z(m)(Kn) _ _ﬂz(m)(_,(n) . (12)

In (12), & ™ (x,) stands for &, (k,, k™, x,). ¢™" and (o)™ are x, -
independent; o *™" and (o)™™" are proportional to the sinusoid A (x,) or
to its spatial derivative oA, / ox, . Here also, for points p_on the interface, au”
and (ao)" are expanded up to terms of first order with respectto x, = ¢ ina
similar manner as in (8) for ad” and (ac)”. Requiring ad’ = Au” and
(rc) = (Ao)” lead to the following equations, writing first the conditions
corresponding to k, = o (i.e. Au® = au®” and ac " = a5 (V7).

ij

AUl = Aul”
—(2) —(1) o (2) o (1) .
a a ibC  sgn( k
|k1| 2 + 2 4 :Bz _ ﬂz _ _ v g(z 1) (a)
M, Hy Mo Hy 4z Ky
—(2) —(1) o (2) o (1)
(04 (04
N R (b)
H, Hy H, My
AU AuO" =
—(2) —(1) o (2) e
o a 1-2v 1- 2v
|k1| 2 _ 2 _9 ( z)ﬁz + ( 1)ﬁ2 -0 (C)
M, My H, My

2

—(2) —(1) _ 5 (2) _ Py B
|k1|[a2 L J[(l av,)B,  L-4v)p, J_.bc L son( k) (d)

Hy Hy Ho #a 4z !
Aal(lo)v = Aal(lo)w =
o B _ — k
|k1|(a2(2) + Olz(l))+ 1+ zvz)ﬂz(Z) -1+ 2V1)ﬂ2(1) = 72Qb sont 2 1) (e)
kl
k,|@® - a )+ 20 +v,)8,2 +20+v)BY =0 ®
Aol <ol
_ _ - - sgn( k,)
i@ v @) anav)8 s a-2vpY = 20, ©
1
|k1|(a_2(2) - a_z(l))+ 2V2ﬁ_2(2) + Zvlﬁ_z(l) =0 (h)
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Ao Q" = Aol
v,B0 —v g = -2Q, Sgnf(# (i)
:
v, B0 v g =0 )
Ac" = AP = (h)and (e) above (13)

In Equations (13 a to j) above, o™ stands for &, (k,, k™ k, = 0) .
The conditions corresponding to au™" = au™* and ac ™" = Ao " are now
listed as :

AV A, o

Au, " = Au," =
—(2) —(1) 2 (2) Pyl
o (24
k12+1(n2[ i— 4 2 J+ﬁ2 Ly (€))
H, Hy H, Hy

—(2) —(1) (2) (€8)
o a bC k
k12+1c:[ 2 —2 J+2[ﬂ2 + LE }_ i 1 (b)

2 2
My Hy M, Hy 8z Kk +x,

AV w©

AuM = Au” = (c) and (d) (displayed below)

K’ + K2[ 072(2) + 072(1)J+ 2[(1_ 2V2)ﬁ2(2) + (- 2v1)ﬂ2(1) J _bc.s, K,

2 2
My Hy M, Hy 8z k; +x,

—(2) —(1) 7 (2) PE)
k2+’(:[cx2 L% J(1—4v2)ﬁ2 L a-av)s”

H, Hy H, Hy

Aul = Aaul” = (a)and (b) above

AV Ao
Ac," =Ac,)" =

2

KAk + w2 (@@ v a )+ [+ 2v,)k2 + 2v k218,

~[(1+ 2v )k + 20 l180 =0 (e)

KoAk2 + w2 (@ = a )+ 2l + v )k + v,k 2182

iQ, &k, (3K, + 2x )

2 2
K +x,

+2[(1+ v )k v l180 =

(f)
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AV
Ao,

VK +xi@P v a®)-a-2v)p2 +a-2v)pP =0 (9)

_ — — — i k
/klz + an(azm _ a2(1>)+ 20,52 +v pM) = - Q,5.Ky (h)

A,
=Aoc, =

kl2 + K‘:

AO';;"V = AO';;"DC =

Ik k(@ v a )1+ 2v,)xl + 2v k18,7
2 2.7 H

~[(1+2v )& +2v. k18, =0 (1)
kIAK (@ —a )+ 2l v, Kl + v k18,7

— i& k. [2Q k7 + (Q, +2Q )x’] .
+ 2[(1+v1)/<: +v1k12]ﬂ2(1) - _ 20 c 1 - bz c/ n (J)

k1 + K,
AoV =Ac)” =

2

/klz + K_nz (072(2) _ 072(1))+ z(vzﬂ_z(z) i Vlﬂ_z(l)) _ ign[Qbkl +2(Qb _ch)Kn] (k)
k (k] +«x.)

w/kf + K‘: (072(2) + a_z(l))+ @+ sz)ﬁ_z(Z) -1+ 2vl),8_2(1) =0 (|)

AV A,

Ao, =Ac,, =

e wl @ TV 50 - i = o (m)

/klz + an (072(2) B 6?2(1))_'_ 2(,3_2(2) 4 [72(1)) _ ién[(Qc - 2Qb)k1 + (QC - Qb)’(n] (n)

k, (K +x7)

AV A,
23 =Ac 23 =

[ _ _ — — i k
klz + K: (az(Z) - az(l))+ Z(Vzﬂz(Z) + V1182(1)) == Q Cé:n - (O)

2 2
K™+ K,

\/kl2 + K: (a_z(z) + 072(“)+ 1+ 2v2),672(2) -1+ 2v1)ﬁ72(1) =0 (p) (14)

Ao

Next, we are concerned with satisfying boundary conditions restricting
ourselves to conditions (13).
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This leads to the displacement and stress fields due to an interface edge
dislocation (b = (0,b,0) ) parallel to the x, - direction at the origin; the interface
is the ox x, - plane. The elastic fields (to first order in A (x,)) for the
sinusoidal edge dislocation require additional works using (14). This will be

the subject of a separate paper.
111 - CALCULATION RESULTS
I11-1. Partial elastic fields associated with interface boundary conditions

Three distinct couples of values for (o™, s™) are extracted from (13); these
are:
mo1 ©nQ, son( k)

—(m VmCmQa —(m) -« S (m —(m
(8) &, = mronme 2 G p = ()" e S
Ky 2 K,
—(m vaQ —(m m m-— Sgn( k) “(m
(b) az( ):_k3 b _ (b)1 ﬂz( ) _ (-1) 1Qbk—21E ﬂz(b)

1 1

) am = Ve @, , independent of m; 5™ = (—1)" &wz g (15)
k

3
1 14

=

m 1

where

Q,=i(v,—v,)M(1-2v,)1-v)+@A-2v )(1~-Vv,)],
V_c =Q,+2Q M- (v, +v,)l4vy,].

None of these couples satisfies the entire conditions (13). For each couple, we
display below the associated elastic fields ™ and (o) ™" defined in
Section 2.2. A superposition of these partial fields will provide the complete
form of solution. The couple (o™, ™) is obtained from (13 a to d)

associated  with  the  displacement. ~We have at  position

; _ (X1 . X ) (U (0)(m)Vv = l](0)('")V ( )(0)(m)V (O_)(aO)(m)v)
iC,Q X,
(0)(m)v m < a m-1
u MY D" - 2v ) fx e, () + =2,
7. r
y @V _ ibQ , ( Xlxz\]

e
2a L |X| 2(1—Vm) r2 J:
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O-l(loz:(m)v = icha[(_l)m 1[X_;+{‘]_1_r_;}5A(X2)}_259n( Xz) 22 '
;;:m)v _iCmQa[(l)m 1[)(_1"_[‘)_1)(_1}5/;()(2)} ’
(o) m)v m-1 - |—X_1 (_ X_1w —|

O g =(-1) ZIVmCmQaLr2+kJ1_ 2)5A(X2)J’

PO < caymic, 9, O (16)

3, = [sin kxdk,
0
Here, s, has the following definition: 5, (x,) = 0 when x, = 0 and s, (x,) =1
when x, = 0; r? = x/ + x.: Constant terms are omitted in the displacement. It
can easily be verified that o™ = y ™= _ ™" have the equal expression
with m on the interface x, = o ; but the stresses & '™ = & ™~ _ & ©X™¥ and

o ™ defined in a similar manner exhibit different factors (with m) that
multiply the equal spatial functions x,(x/ - xZ)/r*and x (x/ +3xZ)/r*
respectively. The pair (&, 5,™) is obtained using (13 e to h) associated with
the stresses. This gives (using the similar notations)

u QMY Q, (( n"t@-2v )h |X1|5A(X2)+%J’

o '
u {oxmv in(—2(1—vm)tan 2 +(—1)m%)’

| ] )
O_l(lob)(m)v _ 2in[(_1)m l[x_l_'_ ( _1 X—;jé‘A(Xz)} — 2sgn( x ) X, XZJ )
e I 8] |
Oy = (—1)”“4ivab{x_§+ [J_l _X_i}s’*(xz)}’
e Oy aig, Xele Z X)) 7
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It can be verified that u ™ = u ™= — ¢ ™" are not identical with m on the

1

interface; but the stresses o)™ = o™= _ 5 ©OmY and & ™ (similar
notations) exhibit the identical expressions with m (= 1 and 2) with the equal
factor (c,+c,)/2 multiplying the spatial functions x, (x> - xZ)/r*and
x,(x’ +3x2)/r* respectively. The couple (a,.,s,™)is calculated using

(13 g to j) associated with the stresses. This leads (similar notations apply)

u (Omv ! {( D" (v,V, - Q) In|x ], (x,)+ Q. —ZJ
VoMo

u Y= ! ([2(1- 2v_)Q,. +v_V ]t + (0" %)
VmﬂmL |X | r J

- X

& (OXmV =2_i{(_1)m1[(1+ 2v . )Q, —v V rx_ (J 2\5;\()(2)—'
m A J

11c
v

X%,
- 2Q, sgn( x,) - |,
r

az‘fl(m)”—Z—iL(l)"”[(l2vm>Qc+v [X— - rx—;\mxz)}

vm

X X2
+2Q, sgn( xz)l—f],
r
e Cayiaig 2 (-2 s, 00 |
K : I

2|x

O_l(zoc)(m)v _ [(ZQ RV s x,) + (=1)" Q. M]

r 14 r

m

+27i(2Q, - V,)5(x,)5, (x,) (18)
where s (x,) is the well-known Dirac delta function in & *™" when x, - 0.

I11-2. Displacement and stress fields due to an interface straight edge
dislocation

111-2-1. Boundary conditions

We define the elastic fields ¢ ™ (x) and (o)™ (x) as
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l](0)('““) _ J(U)(m)oo _ l:l'(O)(m)W

(O_)(O)(m) _ (o_)(O)(m)oc _ (O_)(O)(m)W (19)
with

l](0)(m)W _ a(r")l]a(o)(rﬂ)V + U;m)JéO)(m)v Jr77C(m)*c(0)(m)v .

(O_)(O)(m)W _ n;m)(a)go)(m)v + Ub(M)(o_)fJO)(m)V + ném)(o_)iﬂ)(m)v (20)

Again  ¢“™7and ()™ are due to a straight edge dislocation
(b = (0,b,0) ) parallel to the x, - direction at the origin in an infinitely extended
homogeneous medium (m) (see Anongbal[l, 4, 5]); ™" and ()" are
given in (16) to (18); » ™

atoc

are real to be determined by the requirement that
the elastic fields satisfy the following conditions :

o (@™ (x) iscontinuous across the interface (actually we shall write this
condition for the x, - component).
e §au,”"" = b foraclosed contour in x,x, encircling the dislocation. We

T

may take for T a square of side a centred at the origin and travelled in
the direction of the corkscrew advancing in the positive x, - direction.
e The stresses o "™ are continuous at the crossing of the interface, i.e.

(0)(1)
ij

o (™" (x) vanish far from the interface (i.e. when |x,| > = ).

(0)(2)
(Xl,XZZO,XS):o‘ij (X, x, =0,x;).

It can be seen that all the stresses involved in (o)™~ and (o)°X™" vanish at

infinity. Under such conditions above, 4™ (x) and (o)™ (x) correspond

to an interface straight edge dislocation. Next, we express the quantities
involved in the conditions above and proceed to satisfy these.

u (x, x, = 0,%x,) = uPP(x,,x, =0,x,) =
1*2Vm [ (m) m-1 H (m) "o

{C, —n," (-D""CciQ, -7, (-)""2iQ,
21y |

_ ﬂ(m)(_l)mfl 2i(Qc - Vch)] e .

¢ v, 1-2v ) J
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0
[au, ™ =b=

r

my. my 21Q m 27 [ 2(1-2v _)Q, —
Ué)'Qa+7I;)—b+77c() +V, |=¢€,,
C. bu, v
(0)(1) (0)(2)
P =0y

c,-n""(n""c,iQ, -n"(-n""2iQ,

1-2v + v V_
ﬂc(m)(l)mlzl[( m)Qc m CJ
Vm

0)(1 0)(2
()()—G()()

12 12
(m) .
. =1n.= €,
o)1) _ (0)(2)
33 = O3
( (m) m-1 . (m) m-1 4. (m) m-1 Qc] .
2v, 4C, -n{M(E1""ciQ, - (-1)""2iQ, — " (-1 " T2i == =e,;

Vi)

0)(1 0)(2
()():G()()

11 11

c,-n""(n""c,iQ, -n"(-n""2iQ,

" e 1+ 2v v V. .
M (-1) 12{( n)Qe = VaVe | .

Vm

Il
@

G @™ (%) vanishes when |x,| > » =

(m) (m)

: (m)
Ma VmCmIQa_Ub "

v 2iQ, +n™2iQ, =0=e,; (21)

71

where all e, are constant with m =1 and 2 ;for the various stress conditions
above, we restrict ourselves to terms with the spatial function ./ x,) only.

111-2-2. Satisfying boundary conditions

We are concerned with finding the appropriate expressions for » ") _that satisfy

the boundary conditions (21). We first recognized that "™ (19) takes on the
interface the very simple form involving only 5 ™
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oMM (x,x, = 0,x,) = —n{™27i(2Q, —\/_c)é(xl) . (22)

12 12

o P~ 5 9 on the interface leads to (™ - ,_ = e, constant with m (21). A

number of expressions for , ™ can be extracted from (21), but only one value
leaves & 7™ (22) unchanged on inverting the elastic constants. It is obtained as

2b#1/‘2[/‘1(1_2‘/2)_#2(1_2‘/1)]_ . (23)
(23— av,)-ul@-4v)]ri(2Q, -V,)

[

This can be arrived at from different routes involving different equations in
(21). Only one route is presented as follows. , * can be isolated using (1) e,

and e, in (21), (2) e, and e, and, (3) e, and e, ; (1)=(2) and (1)=(3) provide,
respectively, the following Equations :

c,-ncliq, -n"2iQ,
+7, Zi{vl(/—‘z - #1)Vc + [_ Hy, + 'ul(l+ 2v, - 2V2)]Qc} =0 (24)
Vl[/-‘z(l_ 2V1) - 'ul(l_ 2‘/2)]

20 -v,)X(1-2v,)C, -b'(C, -nCliQ, -7 2iQ,)

(Zch;—Vl\/_c[/lz—/11(3—41/2)]):0 (25)

+7,
Vl'u2

where
b, =(@-v)1-2v,)+ (@-v,)(1-2v,),
bz* =p,(2-2v, -3v,+4vy,) - uv,(3-4v,).

Both Equations (24) and (25) yield »_ (23). Using (23), Equations (24) and e,
(21) allow »® and »® to be calculated; then to reach » * and »*, we may
associate to e, (21), the following equation (26) obtained in the same way as
in (24) :

c, +nPc,iQ, +n’2iQ,
2i{v, (u, — u NV, + [u, —u,@-2v, +2v,)Q.}
volu,@=2v,) = u, - 2v))]

=0. (26)

+7]C
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We have
77(1) _77(2) _ C,+C, _ Hd-v,)+pu,(1-v,)
R e N I e N
1 2bpy g, (e — 1,)
nb(z)z {Cz"' - 172 1 - 2 ] (27)
c,-c, wlulG-av,)) - u2@-av)]

» (™ depends on elastic constants, this is denoted as » ™ = » ™ (v, v, 4, 1,)
by inverting the elastic constants, this becomes » ™ (v,,v ; u,, u,) . We have
the following results:

W . ) i B i
. (Vv um,) 1, (VZ‘Vl'ﬂzvﬂl)——Q_y

a

N ) (28)

1
Ny (ViVoiu,p,)= .—(_1_" _
2iQ , De )

where
Nu = Zbyl(vl(l— 1/2)d1*,ul2 + vz(l—vl)e;,u: + /”1/‘2["1(1_ vz)el* + vz(l—vl)d;])

De = z(1—v ) v, - v, v,C, +v,C)[u’(B-4av,)— u’ (B -4av)]

in which
dl*:V2—5V1+8V1V2; d;:v2+3v1—8v1v2,
* 2 . * 2
e, =5, -v,-8v, , e, =-3v, —v, +8v .

In summary, » (™  are determined by using (23), (27 and 28).

111-2-3. Perfect elastic fields

The elastic fields due to an interface straight edge dislocation (b = (0,b,0))
parallel to the x, - direction at the origin, are given in (19 and 20) with values
of » " calculated from (23), (27 and 28), respectively. We display only the
special values taken on the interface by quantities & ™ and & "™ that are
frequently involved in the analyses of the propagation of the interface crack

loaded in tension.
o 2™ is obtained from (22 and 23) as
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o 0y, = 0,0, = - DAt A B) S A2 (o)
[,ul (3-4v,)— u, (3~ 41/1)]

m =1 and 2. ThiS quantity is unchanged by inverting the elastic constants.
From (21), o "™ (x,, x, = 0, x,) Is first written as

@

o 5™ (x,, %, = 0,x,) = —>. (30)

22 1’72
Xl

The calculation can be performed with m=1. Introducing in (30) the value of
(c, -n"cliQ, - 2iQ,) taken from (24) and making use of the value of ;

(23), we obtain

- (31)

e

@
Il

Ol Z|

- * 2 * 2 2 *
Nu = 4b;11y2(vl(1—vz)aly1 +v,l-v))a,u, + /11;12[— v, —-v,) + 4v1v2a3])

D_e =nr(v, - vz)[,ulz(?) —4v,) - ,uzz(?) - 4v1)][v1(1— v u, +v,(1- "1)/‘2]
where

* 4 2. * 4 2 * 2 2 2 2
a, =v,-v,-4vyv, ,a,=v,-v,—4vyy ,a, =v, +v, —vv, —v'v,.

e, (31) is unchanged by inverting the elastic constants.

IV - DISCUSSION

Expressions for the displacement and stress fields of interface straight edge
dislocations with their associated Airy stress functions have been given
[12,13]. In the geometry of the Figure 1, the calculated shear stress
o, (x,,x, = 0,x,) IS zeroon the interface for an edge dislocation with Burgers

vector b = (0,b,0) perpendicular to the interface. Later on, [14] has stressed
that this shear stress contains a term proportional to the Dirac delta function;
this result has been incorporated in a number of analyses of the propagation of
the interface crack under load [15-18].

Incorporating a Dirac delta function in the value of the shear stress on the
interface is a clear indication that the elasticity solutions given by [12] are
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partial. In the present study, a Dirac delta function is present in the complete
elastic fields (Section 3.2.3) and pertains to the partial elastic fields ¢ ©*™"
()™ only (see (18), Section 3.1). This suggests that the results of the
present study are potentially more general; however, discrepancies between our
expressions fors "™ (x,, x, = 0,x,) (29)and & 5™ (x,, x, = 0,x,) (30and 31)

and those given below by [16] are observed. In the geometry of the Figure 1,
their results are (solid S1):

@ LV IV VN el A e Y e 20 N
O (Xl’XZ - 'Xa)__ (Xl)l
[y1+,u2(3—4v1)][,u2 +/J1(3_4V2)]
4b 1-2v,)+ pu,(1-2v 1
Ok x, = 0,x,) = Myt [y ( 2) D1
Xl

wluy + 3= av)llu, + 1 (3~ 4v,)]

Their shear stress &> changes sign on inverting the elastic constants indicating
that it is discontinuous on crossing the interface from solid S1 (+%’) to solid
S2 (&,7). In contrast our result for & ™ (29) is continuous at the crossing of
the interface. This indicates an essential difference between the interface
boundary conditions in both studies. Their » above is continuous across the

interface like our value (30 and 31). A step in the road toward the elastic fields
due to interface sinusoidal edge dislocations (Figure 1) requires satisfying
boundary conditions involving the interface boundary conditions (14)
corresponding to linear expressions with respect to the perturbation A (x,).

This will be the subject of a separate paper.

V - CONCLUSION

In the present study, Galerkin vectors have been used (Section 2.2) and
associated interface boundary conditions have been displayed. These
conditions can be decomposed into two groups: (1) the first group corresponds
to a planar interface with a straight edge dislocation at the origin (13); (2) the
second group corresponds to terms proportional to the sinusoid or its spatial
derivative with respect to x, in the elastic fields expressed to first order with

respect to the perturbation A (x,) = ¢, sin «, x, (14). Satisfying both boundary
conditions leads to terms of first order with respect to ¢ in the elastic fields

of a sinusoidal edge dislocation (see Figure 1).
In the present paper, we have restricted ourselves to satisfying (13) only.
Expressions of the displacement and stress fields of interface straight edge
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dislocation have been thus obtained. Our results contain the Dirac delta
function in the shear stresses on the interface. We have also compared our
findings with those previously published on similar problems.
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