
   Rev. Ivoir. Sci. Technol., 24 (2014)  26 - 44 26 

ISSN 1813-3290, http://www.revist.ci 
 

P.N.B. ANONGBA 

INTERFACE CRACK UNDER MIXED MODE I+II LOADING AND 

INTERNAL SHEAR STRESS DUE TO POISSON EFFECT: THEORY 

AND CONFRONTATION WITH EXPERIMENTS 

 

P.N.B. ANONGBA 

 

UFR. Sciences des Structures de la Matière et de Technologie, Université 

FHB. de Cocody, 22 BP 582 Abidjan 22, Côte d’Ivoire 

 
_____________________ 

*Correspondance, e-mail : anongba@yahoo.fr 

 

 

ABSTRACT 
 

In this study, we analyse an interface crack loaded in mixed mode I + II with 

an additional internal shear stress that originates from a difference in the 

magnitudes of the Poisson's contractions present on both sides of the 

interface. The presence of such an internal shear stress is common in 

composites under load. The crack is represented by a continuous distribution 

of two families of edge dislocations with infinitesimal Burgers vectors. The 

distribution functions of the dislocations at equilibrium satisfy a system of 

two integral equations with Cauchy-type singular kernels. A solution is given 

to a class of singular integral equations which, when applied to our 

modelling, permits to derive closed-form expressions for the dislocation 

distribution functions and corresponding relative displacements of the faces 

of the crack, the crack-tip stresses, and the crack extension force. We then 

proceed to a comparison of theory with experiments with special attention to 

the work of Liechti and Chai (Journal of Applied Mechanics, 1992) with 

edge-cracked bi-material epoxy/glass strip specimens in bi-axial loading 

experiments. Reasonable agreement with experiment is obtained. 

 

Keywords : linear elasticity, poisson effect, dislocations, interface crack, 

singular integral equations, brittle fracture mechanics. 
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RÉSUMÉ 
 

Fissure d'interface sollicitée en mode mixte I+II et en présence 

d'une contrainte interne de cisaillement promue par l'effet Poisson: 

analyse théorique et confrontation avec des expériences 
 

Dans la présente étude, nous analysons une fissure d'interface sollicitée en 

mode mixte I+II auquel on adjoint une contrainte interne de cisaillement 

provenant d'une différence dans les valeurs de la contraction de Poisson 

(perpendiculairement à l'interface) présente de part et d'autre de l'interface. La 

présence d'une telle contrainte interne est courante dans les matériaux 

composites en service. La fissure est représentée par une distribution continue 

de deux familles de dislocations coins de vecteurs de Burgers infinitésimaux. 

Les fonctions de distribution des dislocations à l'équilibre satisfont un 

système de deux équations intégrales avec des singularités de type Cauchy. 

Une solution est proposée pour une certaine classe d'équations intégrales 

singulières, laquelle appliquée à notre modèle, fournit sous expressions 

mathématiques fermées, les fonctions de distribution des dislocations de 

fissure, les déplacements relatifs correspondant des lèvres de la fissure, les 

contraintes en tête de fissure  et la force d'extension de la fissure. Nous 

procédons ensuite à une confrontation de la théorie avec l'expérience avec une 

attention particulière aux expériences de Liechti et Chai (Journal of Applied 

Mechanics, 1992) sur des éprouvettes d'époxy/verre avec encoche sollicitées bi-

axialement. Un accord raisonnable avec l'expérience est obtenu.  

 

Mots-clés : élasticité linéaire, effet poisson, dislocations, fissure d'interface, 

équations intégrales singulières, mécanique de la rupture fragile. 
 

 

I - INTRODUCTION 
 

When two welded dissimilar elastic materials are loaded in tension, 

perpendicularly to their common interface, an internal shear stress develops. 

This is the result of a difference in the magnitudes of the Poisson's 

contractions that are generated in both media. This has been recognized and 

incorporated recently in the mathematical analysis of the propagation of an 

interface crack loaded in tension (Anongba [1]); Poisson's effect increases 

significantly the crack extension force. Consequently, it becomes of interest 

to discuss Poisson's effect in connection with experiments. A number of 

experimental studies on the interfacial fracture are available. First, we may 

mention those using Brazilian disk specimens (Wang and Suo [2], Banks-Sills 

et al. [3]; Banks-Sills and Ashkenazi [4]; for a review see Banks-Sills [5]). 
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It is obvious that, for Brazilian disk specimens, when the interface crack is 

aligned along the applied loading direction (mode I loading), the applied load 

itself on the specimen disturbs (i.e. inhibits somewhat) the Poisson's 

contractions about the interface. It thus appears that these tests are not 

appropriate to evaluate Poisson's effect. Second, we may consider (among 

others) Liechti and Chai [6,7] which use edge-cracked bi-material 

(epoxy/glass) strip specimens in biaxial loading experiments; the pair 

epoxy/glass possesses a large difference in the values of Poisson's 

contractions on crossing the interface.  

 

An edge-cracked (epoxy/glass) strip specimen under applied tension normal 

to the interface clearly displays an internal shear stress due to Poisson's effect 

directed in one direction in the main part of the uncracked region of the 

specimen ahead of the tip of the starter crack. Hence, applying a shear in the 

same direction would increase much more the magnitude of the crack 

extension force whereas in the opposite direction, this would decrease. In the 

present study, we shall extend our interface crack analysis to bi-axial applied 

loading (mixed mode I+II) and confront the theoretical findings to 

experiments with attention to Liechti and Chai [6,7]. The modelling 

methodology and associated results are given in Section 2 and 3 respectively. 

Confrontation of the theory with experiments forms Section 4. A conclusion 

is given in Section 5.  

 

 

II - MODELLING METHODOLOGY 
 

II-1. Internal shear stress on the interface due to Poisson's contraction 
 

Consider two isotropic elastic media (1) and (2) (Figure 1), isotropic and 

elastic, with notation i , i , iE ( 1i  and 2) to designate Poisson's ratio, 

shear modulus and Young's modulus, respectively. We assume that the two 

solids are firmly linked along a planar interface, such that : mediums 1 and 2 

occupy the regions 02 x  and 02 x  respectively; 31xOx represents the 

interface with origin O at the centre. An interface crack of finite length 2a is 

present at the origin, extending from ax 1 to a with a straight front running 

indefinitely in the 3x direction. Figure 1 has been commented in some 

details elsewhere [1].  

 

Under the action of a uniform tension a

22 , applied at infinity, the solids (1) 

and (2) suffer a Poisson's contraction of different magnitude; this induces an 

internal shear stress in the surrounding media about the interface.  
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For illustration purpose only of the displacement, we construct on the 

continuum on both sides of the interface an identical cubic lattice. This is not 

a lattice in the sense of crystallography (i.e. this is not associated with atomic 

arrangement). We assume that Hooke's law is valid throughout. These lattices 

are illustrated in dashed lines under the assumption 12212222 // EE aa    

before the welding of the solids.  

 

Consider two nodes A (medium 1) and B (medium 2) on either side of the 

interface which have the equal coordinate 
1x  (before loading) and a 

separation distance d (along 
1x ) under load when the two materials are not 

welded. In the welded state, A is moved horizontally by a distance of 01 u  

and B by 02 u . We ignore vertical displacement along 
2x . In Figure 1, the 

displacements 
1u  and 

2u at different places are represented by short horizontal 

arrows and the resultant welded lattices are partially drawn in solid lines. The 

induced internal shear stress a

12  is represented about the node A and is given, 

at an arbitrary point ),0,( 31 xxP  on the interface, the following expression [1]:  

 

1122

2

2

1

1
12 )( xx

EEa
P a

s

ssa 


 







    (1) 

 

where s corresponds to the shear modulus about the interface and sa is the 

distance between A and B along 
2x  (Figure 1);  ds /   is the ratio of   

(distance along 1x  between A and B in the welded state under load) by d  (the 

corresponding distance in the non welded state). a

12  is odd function of 1x  

changing sign in the region 01 x  (Figure 1).  When an additional uniform 

shear stress a

12  is applied externally, the associated displacements in the 

media amplify or reduce those due to a

12  depending on the sign of a

12 . In the 

situation of Figure 1 where 0 , positive a

12  amplifies and reduces a

12 in 

01 x and 01 x , respectively.  
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Figure 1 : Two elastic mediums (1) and (2) subjected to a uniform tension 
a

22  at infinity. Far from the interface ( 31xOx ), the mediums suffer uniform 

Poisson's contractions )/( 22 i

a

i E  ( 1i  and 2) in the 1x direction. The 

induced shear stress a

12  is indicated about the interface. A crack of finite 

length 2a located at the origin is present. This sketch corresponds to 

)/()/( 12212222 EE aa   . For mixed mode I+II loading, an additional 

applied shear stress a

12  is present. In the regions 01 x  and 01 x , positive 
a

12  works with and against a

12  respectively. 

 

 

II-2. Interface crack model and singular integral equations 
 

Our method of analysis consists in representing the crack by a continuous 

distribution of dislocation families with infinitesimal Burgers vectors         

(see [1] and additional references therein). 
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The first step is to determine the distribution functions of the crack 

dislocation families at equilibrium under load. We generally arrive at a 

system of singular integral equations involving these functions. When the 

distribution functions of the dislocations have been found, we can obtain by 

integration the relative displacements of the faces of the crack, the crack-tip 

stresses and the crack extension force. The crack in Figure 1 is assumed to be 

filled with two families (1 and 2) of straight edge dislocations parallel to 3x  

with Burgers vectors )0,0,(1 bb 


 and )0,,0(2 bb 


 in the 
1x and 

2x  directions, 

respectively. The system is subjected to uniform applied shear a

12  and 

tension a

22  at infinity; in addition we consider internal shear stresses 

transmitted by the interface as the result of the existence of internal uniform 

Poisson stresses )( 221

a  and )( 222

a  in the 1x direction in materials 1 

and 2, respectively. The dislocation distribution function )( 1xDi ( 1i  and 2) 

gives the number of dislocations of family i in a small interval 
1dx about 

1x  as 

11)( dxxDi . To find the equilibrium dislocation distributions, we may ask for 

zero total force on the crack faces; on our modelling, this gives  

 









0

0

22

12




;       (2) 

 

ij  stands for the total stress at any point ),,( 321 xxxP in the surrounding 

medium and is linked to iD ; in (2), we are only concerned with the points of 

the crack faces. )(Pij  is written as  

 
)2()1()(

ijij

s

ij

a

ijij  
     

(3) 

 

where a

ij  corresponds to both the applied stresses and the assumed uniform 

internal Poisson stress, )(s

ij  to the stress induced by the interface under load 

in absence of the crack and  

 

'
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'

132

'

11

)()( )(),,( dxxDxxxx n

a

a

n

ij

n

ij 


     ( 1n  and 2); (4) 

 

here )(n

ij  is the stress field produced by a dislocation of family n at the 

origin.  
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In order to write explicitly (2), we display the following results on the 

interface (points ),0,( 321 xxxP  ): 

 )(

12

s is given by a

12  (1) and 0)(

22 s ; 

 Edges with )0,0,(1 bb 


 (Family 1) 

 

'
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32
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1132

'
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)1(

22 xxCbxxxx   ;   (5) 

 

 Edges with )0,,0(2 bb 


 (Family 2) 
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'
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'
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

 .   (6) 

 

In (5) and (6), taken from Comninou and Dundurs [8],   is the Dirac delta 

function. Moreover,  
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2
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where ii  43 . The traction free boundary condition (2) yields 
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i 1 and 2, ax 1 , and ij  is the Kronecker delta. We arrive at a system of 

two integral equations with Cauchy-type singular kernels with unknown 

functions 1D  and 2D . The Cauchy principal values of the integrals have to be 

taken. Next, an analytical solution is given to the governing equations (10).  
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III - CALCULATION RESULTS 
 

III-1. Analytical solution to singular integral equations 
 

From the second of (10) and using the book by Muskhelishvili [9] (see 

chapter 11 "Inversion formulae for arcs"), we write  
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Introducing (11) in the first equation of (10), we obtain 
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Where 
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2

1

2

1121 )()( xxaxxf aa   .   (13) 

 

We temporary modify our notation and write (12) as  
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Where 
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(15) 

 

(i. e. 22   ). Equation (14) takes the form of "Example 43" (page 58) in 

the book by Estrada and Kanwal [10]; by a convincing operational approach , 

it is shown there that the solution of (14) can be written as  

 

2
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where 1  and 2 are solutions of the pair of Cauchy type integral equations  
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that satisfy the additional requirement  
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A and B are arbitrary constants. The solutions of (17) (
1  and 

2 ) can be 

worked out by using the treatment of Muskhelishvili [9] (see chapter 14 "The 

case of continuous coefficients"); we have  
)(

221212

21

1

1

1

1
)(

)(

1

1
)(

nni

nnnnn
s

s

i
BA

abC

sf
s

















































  

 
  























 )(1/1

/)(
)(

21

1

1

2211
21 sttt

dtBAabCtf
constconst

nni

nn
nn 


   (19) 
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1n  and 2; 
1const  and 

2const  are arbitrary constants. Using (18) and some 

considerations on the nature (odd and even) of f  and g, we find that (i)

21 constconst  , BA   or (ii) 
21 constconst  , BA  . Then, a simple 

form for g follows from which is deduced the following expression for 
1D  the 

distribution function of the edge dislocation family 1:  
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atxa  ,1
, Re[...] and Im[...] denote the real and imaginary parts of the 

complex quantity inside the brackets[ ], and here also,
1const  and 

2const  are 

arbitrary constants. From 
1D  (21), we can reach 

2D  using (11). Closed form 

solutions are obtained after performing the various integrations in (21) using 

(13) for f. These are given below in the next section assuming zero 

dislocation content after unloading.  

 

 

III-2. Physical quantities associated with the interfacial crack  
 

III-2-1. Dislocation distributions; Relative displacements of the faces of the  

crack 
 

Closed-form expressions have been obtained for the distribution functions 
1D

and
2D  of the edge crack dislocations. These are  
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1n and 2. 
1D and

2D  only differ by a factor i  in front of the curly brackets

  . ch  is the hyperbolic cosine function. The relative displacement             

n ( 1n and 2) of the faces of the crack in the nx direction is  
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 and after integration  
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1n and 2; F is Gauss's hypergeometric function and X, Y and Z are 

arguments for F with values  

 

 axaiiiX 2/)(;2/3;2/1,2/1 1   

 axaiiiY 2/)(;2/5;2/3,2/1 1   

 axaiiiZ 2/)(;2/5;2/3,2/1 1   

 

Other relations of interest (in the calculation of the crack extension force 

below, for instance) are expressions for n , in the vicinity of the crack tip at 

ax 1
. At the distance 

1xas  , as 0 , we get using (24) 

 

 




























i

aa

nnn
a

s
iaaii

C

asch
s

2
2/)(Re

2)(
)( 122221 , (25) 

1n and 2.  

 

 

III-2-2. Stresses at the crack tip and crack extension force  

 

We would like to express the total stresses 
12  and 

22 in the plane of the 

crack in the neighbourhood of the crack tip at ax 1
. These are given by the 

dominant terms of )( )2()1(

ijij    in (3) at point ),0,( 321 xxxP   with 

11 sax  , as  10 . Using (3 to 6) and (22) we obtain  

 

 

























i

aa

nnn
a

s
iaaiii

s

a
s

2
2/)21)((Re

2
)( 1

122221

1

12 , (26) 

 

1n and 2. A procedure to calculate the crack extension force G has been 

described by Bilby and Eshelby [11]. We have also referred to it in a number 

of works [12 to 17]. This gives G as  

 

















 





aa

a

aa

a
a

dxssdxss
a

G 122122121112
0

)()(
2

1
)()(

2

11
lim  ; (27) 

 

for 12  and 22 , we use (26) with axs  11 , and for 1  and 2  (25) with 

12 xaas  . We obtain 
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 






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2
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2

22

2

24

)41( aa a
a

C

a
G 





.  (28) 

 

When G is defined as  

 

21 GGG         (29) 

 

With 
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


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
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



aa

a

nn
a

n dxss
a

G 1212
0

)()(
2

11
lim  , 1n and 2,  (30) 

 

it follows 
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a a

a
iiBi

2

2

0 2
2/1,2/3)21(Relim , 1n and 2, (31) 

Where 

 

2/1222  iaai aa  ;    (32) 

 

),( yxB  is the beta function (Euler's integral of the first kind). It thus appears 

that G (28) is well defined, but nG , associated with individual loading modes 

I and II, carries an oscillatory term with a  indefinitely. The crack extension 

force possesses the following aspects:  

 

 G (28) the total energy release rate is well defined, 

 1G  and 2G  (30) the individual energy release rates associated with 

modes II and I carry an oscillatory term with a indefinitely, 

 If the oscillatory term is neglected, then 2/21 GGG   (31).  

 

These behaviours of the crack extension force have been described earlier by 

Sun and Jih [18] and Raju et al. [19].  
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IV - CONFRONTATION WITH EXPERIMENTS 
 

Experimental works provide the crack extension force (i.e. fracture 

toughness) as a function of phase angle, also termed mode mix or mixity     

([2 to 7], among others). The phase angle   at position ),0,( 321 xxxP  , 

on the interface ahead of the crack front, with 
11 sax  , as  10 , is 

defined in terms of crack-tip stresses as  

 

 )(/)(tan 122112

1 ss   .     (33) 

 

Making use of (26), we write  

 

100

010

tan

tan
tan






yx

yx




       (34) 

 

where  

 

)2/ln( 11 as  , 

 Max s

a  2~21220  , 

 May s

a  2/~)41(2 2

220      (35) 

 

with )//( 2211 EEsss   , saaa /~   and aaM 2212 / . The crack 

extension force G (28) can be expressed in terms of the phase angle as  

 

   
 211

2

1

22
2

tan)tan2(tan21

)tan1)(tan1)(41(
0;0~1









 ss MGaG   (36) 

Where 

 
C

a
MG

a

s
4

)41(
0;0

2

22

2 



 .    (37) 

 

)0;0(  sMG   is the value of the crack extension force when both M (the 

applied shear by tension ratio) and s are zero. From (1), it may be seen that 

0s  corresponds to 012 
a  (absence of Poisson's effect). Poisson's effect 

is taken into account only when 0s . Other relations are of interest. We 

first mention the relation between M and the phase angle  ; this is derived 

from (34) as  
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



tan)tan2(tan21

tan

11

11






BA
M

   

(38) 

 

Where 
 

1

2

1 tan)~21(2/~)41(2  aaA ss  ,  

1

2

1 tan)2/~)41(2(~21  aaB ss  .  

 

It is also interesting to mention the following result on the value of the phase 

angle at the minimums of the crack extension force. When 0s , G (28) is 

minimum for 0M  (i.e. 012 
a ); this minimum corresponds to 

)0;0(  sMG   (37). When 0s , G (28) is minimum for 

Es MaM  2/~  with value  

 

)0;0()~1( 2  ssE MGaG  .     (39) 

 

It is noted that both minimums of G correspond to the equal phase angle 
E  

(use (34) for instance) given by  

 

1

1

tan21

tan2
tan









E .     (40) 

 

E  depends on )2/ln( 11 as   and therefore on the values given to 
1s  and 

a. For illustration purpose and to confront theory with experiments, we 

consider the work of Liechti and Chai [7] with the bi-material system (1)/(2) 

of our modelling corresponding to the pair epoxy/glass. The parameters taken 

from their work are:  

 

0605.0 ; GPa03.21 E , 37.01  ; GPa95.682 E , 20.02  .  

We also use )1(2 iiiE    and take 2/)( 21  s , 5.0s  (see [1]). 
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Figure 2 : (a) Reduced crack extension force  )0;0(/
~

 sMGGG   as a 

function of aaM 2212 / , 20~ a . (b) Phase angle  (degrees) as a function 

of M . The identical )67.0( E corresponds to both 0M  ( 0s ) and 

04.5 EMM  ( 0s ); cm65.72 a , cm27.11 s , cm5.0sa . 
 

 In both (a) and (b), dashed and solid curves corresponds to 0s  and 

0s  respectively; material parameters for the system (1)/(2) correspond to 

epoxy/glass (see text). 
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Figure 2a is a graphical representation of G
~

, the crack extension force G 

(28) reduced by )0;0(  sMG   (37), as a function of aaM 2212 / . When 

0s , G
~

 is minimum for 0M ; when Poisson's effect is taken into 

account ( 0s ), this minimum is shifted to Es MaM  2/~  (see below 

(35) for a~ ). The reduced G
~

 increases indefinitely when M moves away from 

EM  along the opposite directions. If one takes cm65.72 a (the length of 

the edge starter crack of the specimens [7]) and cm5.0sa
                            

( 65.7/~  saaa ), this gives 04.5EM .  

 

Figure 2b represents the phase angle  as a function of M (using (38)). Here 

also, dashed and solid curves corresponds to 0s  and 0s respectively. 

We take values close to those of Liechti and Chai [7]: cm65.72 a and 

cm27.11 s ; this gives  67.0E , 04.5EM . As mentioned earlier E

corresponds to 0M  on the 0s curve and EMM  on the 0s curve.  
 

For the system (1)/(2) corresponding to the epoxy/glass, a

12  (1) is negative in 

the 01 x  region of the fracture specimen; this means that positive M reduces 

the internal strain caused by a

12  while negative M amplifies this strain in that 

region. For 0s  (solid curve in Figure 2b) and 0M , the phase angle is 

negative with a large magnitude (about -70°); with increasing positive applied 

M, the phase angle   increases drastically: M interval of [0, 10] corresponds 

to   interval of [-70°, 70°] approximately. The corresponding decrease of   

for negative M is much less pronounced: M interval of [-20, 0] for   interval 

of [-85°, -72°] approximately. For the experimentalist, starting from zero 

applied M, this is the manifestation of an apparent asymmetry. Edge-cracked 

bi-material strip specimens in bi-axial loading experiments would display an 

asymmetrical behaviour with respect to the direction of the applied shear 

stress a

12  as may be noted in [7]. We further defined from (36) )(ˆ G as 

 

     211

2

1

22

2
tan)tan2(tan21

)tan1)(tan1)(41(

0;0~1
ˆ





 







ss MGa

G
G .  (41) 

 

Figure 3 represents )(ˆ G  for cm65.72 a and cm27.11 s . Also reported 

are experimental values (symbol  ) of the fracture toughness versus phase 

angle   given by Liechti and Chai [7] (their Figure 6).  
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What we do first is to identify (by simple inspection) the minimum value: we 

find it to be located at  20m , approximately. We then report the 

experimental data so that m  be read E  (40); with the values given to a and 

1s above,  67.0E . Hence for each value of the phase angle provided by 

Liechti and Chai [7], we add the negative value mE   ; then, the 

experimental fracture toughness is reduced by 
2J/m75.3 (taken as the 

associated minimum). Comparison between Ĝ (41) and experimental points 

(symbol  ) seems quite satisfactory. We use Ĝ instead of 

)0;0(/
~

 sMGGG   because Liechti and Chai [7] didn't take any 

account of Poisson's effect in their considerations with theory. Taking into 

account Poisson's effect would require to multiply the fracture toughness 

values in Figure 3 by the quantity 
2)~1( as  (see (36)); with cm2/1sa

 
 

 
 

Figure 3 : Reduced crack extension force Ĝ (41) (solid curve) as a function 

of phase angle  (degrees). Experimental points (symbol  ) are those of 

Liechti and Chai (1992) (their Fig. 6); cm65.72 a , cm27.11 s and 

material parameters correspond to epoxy/glass (system(1)/(2)) (see text). 
 

And cm65.72 a ( 65.7~ a ) and epoxy/glass, this gives the value 2.6 

approximately. In other words, we would consider G
~

 instead of Ĝ . 
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We also note that our crack model of Figure 1 is different from the edge-

cracked bi-material system in [7] (see their Figure. 1); however this 

difference seems not too serious in the graphical representation of fracture 

toughness versus phase angle, on view of Figure 3.  

 

 

V - CONCLUSION  
 

The mathematical analysis of a bi-material interface crack of finite length 2a 

under applied mixed mode I+II loading, incorporating an internal shear stress 

that originates from a difference in Poisson's contractions on crossing the 

interface, has been performed. Various physical quantities, involved in the 

discussion of the conditions for crack motion, are given in closed-form 

expressions. These are the relative displacement of the faces of the crack, the 

crack-tip stress and the crack extension force. This would help to a better 

interpretation of experimental findings in a number of situations.  

Confrontation with experiments has been done with attention to the work of 

Liechti and Chai (1992) with edge-cracked bi-material epoxy/glass strip 

specimens in bi-axial loading experiments. 
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