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ABSTRACT

In this study, we analyse an interface crack loaded in mixed mode I + 11 with
an additional internal shear stress that originates from a difference in the
magnitudes of the Poisson's contractions present on both sides of the
interface. The presence of such an internal shear stress is common in
composites under load. The crack is represented by a continuous distribution
of two families of edge dislocations with infinitesimal Burgers vectors. The
distribution functions of the dislocations at equilibrium satisfy a system of
two integral equations with Cauchy-type singular kernels. A solution is given
to a class of singular integral equations which, when applied to our
modelling, permits to derive closed-form expressions for the dislocation
distribution functions and corresponding relative displacements of the faces
of the crack, the crack-tip stresses, and the crack extension force. We then
proceed to a comparison of theory with experiments with special attention to
the work of Liechti and Chai (Journal of Applied Mechanics, 1992) with
edge-cracked bi-material epoxy/glass strip specimens in bi-axial loading
experiments. Reasonable agreement with experiment is obtained.

Keywords : linear elasticity, poisson effect, dislocations, interface crack,
singular integral equations, brittle fracture mechanics.
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RESUME

Fissure d'interface sollicitéte en mode mixte I+11 et en présence
d'une contrainte interne de cisaillement promue par I'effet Poisson:
analyse théorique et confrontation avec des expériences

Dans la présente étude, nous analysons une fissure d'interface sollicitée en
mode mixte I+l1l auquel on adjoint une contrainte interne de cisaillement
provenant d'une différence dans les valeurs de la contraction de Poisson
(perpendiculairement a l'interface) présente de part et d'autre de I'interface. La
présence d'une telle contrainte interne est courante dans les matériaux
composites en service. La fissure est représentée par une distribution continue
de deux familles de dislocations coins de vecteurs de Burgers infinitésimaux.
Les fonctions de distribution des dislocations a I'équilibre satisfont un
systeme de deux équations intégrales avec des singularités de type Cauchy.
Une solution est proposée pour une certaine classe d'équations intégrales
singulieres, laquelle appliquée a notre modéle, fournit sous expressions
mathématiques fermées, les fonctions de distribution des dislocations de
fissure, les déplacements relatifs correspondant des levres de la fissure, les
contraintes en téte de fissure et la force d'extension de la fissure. Nous
procédons ensuite a une confrontation de la théorie avec I'expérience avec une
attention particuliére aux expériences de Liechti et Chai (Journal of Applied
Mechanics, 1992) sur des éprouvettes d'époxy/verre avec encoche sollicitées bi-
axialement. Un accord raisonnable avec I'expérience est obtenu.

Mots-clés : élasticité linéaire, effet poisson, dislocations, fissure d'interface,
équations intégrales singuliéres, mécanique de la rupture fragile.

I - INTRODUCTION

When two welded dissimilar elastic materials are loaded in tension,
perpendicularly to their common interface, an internal shear stress develops.
This is the result of a difference in the magnitudes of the Poisson's
contractions that are generated in both media. This has been recognized and
incorporated recently in the mathematical analysis of the propagation of an
interface crack loaded in tension (Anongba [1]); Poisson's effect increases
significantly the crack extension force. Consequently, it becomes of interest
to discuss Poisson's effect in connection with experiments. A number of
experimental studies on the interfacial fracture are available. First, we may
mention those using Brazilian disk specimens (Wang and Suo [2], Banks-Sills
et al. [3]; Banks-Sills and Ashkenazi [4]; for a review see Banks-Sills [5]).
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It is obvious that, for Brazilian disk specimens, when the interface crack is
aligned along the applied loading direction (mode I loading), the applied load
itself on the specimen disturbs (i.e. inhibits somewhat) the Poisson's
contractions about the interface. It thus appears that these tests are not
appropriate to evaluate Poisson's effect. Second, we may consider (among
others) Liechti and Chai [6,7] which use edge-cracked bi-material
(epoxy/glass) strip specimens in biaxial loading experiments; the pair
epoxy/glass possesses a large difference in the values of Poisson's
contractions on crossing the interface.

An edge-cracked (epoxy/glass) strip specimen under applied tension normal
to the interface clearly displays an internal shear stress due to Poisson's effect
directed in one direction in the main part of the uncracked region of the
specimen ahead of the tip of the starter crack. Hence, applying a shear in the
same direction would increase much more the magnitude of the crack
extension force whereas in the opposite direction, this would decrease. In the
present study, we shall extend our interface crack analysis to bi-axial applied
loading (mixed mode I+Il) and confront the theoretical findings to
experiments with attention to Liechti and Chai [6,7]. The modelling
methodology and associated results are given in Section 2 and 3 respectively.
Confrontation of the theory with experiments forms Section 4. A conclusion
is given in Section 5.

Il - MODELLING METHODOLOGY

I1-1. Internal shear stress on the interface due to Poisson's contraction

Consider two isotropic elastic media (1) and (2) (Figure 1), isotropic and
elastic, with notationv,, x4 , E, (i=1 and 2) to designate Poisson's ratio,

shear modulus and Young's modulus, respectively. We assume that the two
solids are firmly linked along a planar interface, such that : mediums 1 and 2
occupy the regions X, >0 and X, <O respectively; Oxx, represents the

interface with origin O at the centre. An interface crack of finite length 2a is
present at the origin, extending from x, = —ato a with a straight front running

indefinitely in the X, —direction. Figure 1 has been commented in some
details elsewhere [1].

Under the action of a uniform tensiono,, applied at infinity, the solids (1)

and (2) suffer a Poisson's contraction of different magnitude; this induces an
internal shear stress in the surrounding media about the interface.
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For illustration purpose only of the displacement, we construct on the
continuum on both sides of the interface an identical cubic lattice. This is not
a lattice in the sense of crystallography (i.e. this is not associated with atomic
arrangement). We assume that Hooke's law is valid throughout. These lattices

are illustrated in dashed lines under the assumption v,o;,/E, >v,05,/ E;
before the welding of the solids.

Consider two nodes A (medium 1) and B (medium 2) on either side of the
interface which have the equal coordinate x, (before loading) and a

separation distance d (along x,) under load when the two materials are not
welded. In the welded state, A is moved horizontally by a distance of u, <0
and B by u, > 0. We ignore vertical displacement along x, . In Figure 1, the
displacements u, and u, at different places are represented by short horizontal
arrows and the resultant welded lattices are partially drawn in solid lines. The
induced internal shear stress 7/, is represented about the node A and is given,
at an arbitrary point P(x,,0, X,) on the interface, the following expression [1]:

a Vil | V v a =77y
7,(P) = __’u[_l - _2}722)(1 =-—aX (1)

where p, corresponds to the shear modulus about the interface and a,is the
distance between A and B along x, (Figure 1); v, =¢/d is the ratio of ¢
(distance along x, between A and B in the welded state under load) by d (the
corresponding distance in the non welded state). 7/, is odd function of x,
changing sign in the region x, <0 (Figure 1). When an additional uniform
shear stress o, is applied externally, the associated displacements in the
media amplify or reduce those due to 77, depending on the sign of o,. In the
situation of Figure 1 where & <0, positive o, amplifies and reduces z;,in
X, >0and x, <0, respectively.
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Figure 1 : Two elastic mediums (1) and (2) subjected to a uniform tension
o, atinfinity. Far from the interface (Ox,X, ), the mediums suffer uniform
Poisson's contractions (—v,05,/E;) (i =1 and 2) in the x, —direction. The

induced shear stress 7/, is indicated about the interface. A crack of finite
length 2a located at the origin is present. This sketch corresponds to
(v,05,1 E,) > (v,05,1 E,) . For mixed mode I+I1 loading, an additional

applied shear stress o7, is present. In the regions x, >0 and x, <0, positive
oy, works with and against z;, respectively.

11-2. Interface crack model and singular integral equations

Our method of analysis consists in representing the crack by a continuous
distribution of dislocation families with infinitesimal Burgers vectors
(see [1] and additional references therein).
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The first step is to determine the distribution functions of the crack
dislocation families at equilibrium under load. We generally arrive at a
system of singular integral equations involving these functions. When the
distribution functions of the dislocations have been found, we can obtain by
integration the relative displacements of the faces of the crack, the crack-tip
stresses and the crack extension force. The crack in Figure 1 is assumed to be
filled with two families (1 and 2) of straight edge dislocations parallel to x,
with Burgers vectors 61 =(b,0,0) and 52 =(0,b,0) in the x,and x, directions,
respectively. The system is subjected to uniform applied shear o, and

tension o, at infinity; in addition we consider internal shear stresses
transmitted by the interface as the result of the existence of internal uniform
Poisson stresses (-v,o05,) and (-v,os,) in the x, — direction in materials 1
and 2, respectively. The dislocation distribution function D,(x,) (i =1 and 2)
gives the number of dislocations of family i in a small interval dx, about x, as
D. (x,)dx,. To find the equilibrium dislocation distributions, we may ask for
zero total force on the crack faces; on our modelling, this gives

{512 =0 . (2)

_ )
0, =0

o; stands for the total stress at any point P(X,, X,,X;) in the surrounding
medium and is linked to D, ; in (2), we are only concerned with the points of
the crack faces. &;;(P) is written as

— _ __a ) |, =@ |, =@
G =0y t0oy +0; +0 (3)

where o corresponds to both the applied stresses and the assumed uniform

internal Poisson stress, o to the stress induced by the interface under load
in absence of the crack and

ij

" = ja(“) (X, = X;, X5, X3)D, (x)dx, (n=1and 2); (4)

here ai(j”) is the stress field produced by a dislocation of family n at the
origin.
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In order to write explicitly (2), we display the following results on the
interface (points P(x;, X, =0,X;)):

o oYisgivenby ¢}, (1) and o) =0;
e Edges with b1 = (b,0,0) (Family 1)

: bC 1
O-l(?(xl_xl'xz =0,X;) :7 .
1T X
O-élz) (% — Xi’ X, =0,%;) =-hBCo(x, - Xl) ; (5)

e Edges with b, = (0,b,0) (Family 2)

(71(5) (% — X1'1 X, =0,%;) =bBCo(x, - Xl) ,
bC 1
TX —X

(6)

o35 (X =X, %, =0, %) =—

In (5) and (6), taken from Comninou and Dundurs [8], & is the Dirac delta
function. Moreover,

__2ml-0) _ 2u(+a) -
(5 +DA-B%) (x5, +DA- )
with
_ Al D p ) (8)
(i, +1) + 11, (5, +1)
:M(Kz —1)—#2(1('1—1); —ES,BSE 9)
w(c, +1) + g, (1, +1) 2 2

where x;, =3 —4v,. The traction free boundary condition (2) yields

Doy =0,  (10)

l 1

a - a C ;
(01, = 0%))0yy + 03,0, + bﬁC( L (%) = Dy (%, 7 I

i=land?2, |x|<a,and &; is the Kronecker delta. We arrive at a system of

two integral equations Wlth Cauchy-type singular kernels with unknown
functions D, and D,. The Cauchy principal values of the integrals have to be

taken. Next, an analytical solution is given to the governing equations (10).
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11 - CALCULATION RESULTS

I11-1. Analytical solution to singular integral equations

From the second of (10) and using the book by Muskhelishvili [9] (see
chapter 11 "Inversion formulae for arcs"), we write

a’-x" (0%, - wmou» a1

a’-x X, — X,

DZ(Xl) = ﬂl:)l-C jl

Introducing (11) in the first equation of (10), we obtain

j(daz ~x> - pg*ya’ - xf) Slfx)i() dx, = E f(x,) (12)

1

Where

f(x)=(o5, ax ) a’ - X12 + Bo3.% . (13)

We temporary modify our notation and write (12) as

1- gjgom fJJltgmm_ zf@) 14)

T st=s T

Where

g(t) = D,(at)
f(s) = f(as) (15)
(i. e. 2 =—p%). Equation (14) takes the form of "Example 43" (page 58) in

the book by Estrada and Kanwal [10]; by a convincing operational approach ,
it is shown there that the solution of (14) can be written as

g(s) = l/jl(s) ¥, (S) (16)

oai-s

where i, and i, are solutions of the pair of Cauchy type integral equations
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1 _

A0 . f6)
+(6, -0, dt=—=+AJ,+BJ,; n=1and 2 17
()(nl n) jtS abC+ + n2n ( )
that satisfy the additional requirement
1+t R
=1g()In ( jdt = | ———dt; (18)
I :|-1abC\/1—t2

A and B are arbitrary constants. The solutions of (17) (i, and ,) can be

worked out by using the treatment of Muskhelishvili [9] (see chapter 14 "The
case of continuous coefficients"); we have

ib‘('@\l”ﬂl)
+(0y- 5n)l( / j(l_sJ
1-f |1+

J /abC+A5m+Ban2)dt
(L-t/141)° T ()

v,(5)= 1_lﬂ (féc) Ad, +Bd,

(19)

X [const 0, +c0nst,o,, +
-1

where
5= (1 ) j (20)
27r 1-4

n=1and 2; const, and const, are arbitrary constants. Using (18) and some

considerations on the nature (odd and even) of f and g, we find that (i)
const, =const,, A=-B or (ii) const, =—const,, A=B . Then, a simple
form for g follows from which is deduced the following expression for D, the
distribution function of the edge dislocation family 1:

i0 i0

1 a-x a-—x

D,(X,) = ————| const, Re| | ——~ const, Im L
(%) 2% ' {[amlj }r ﬁaﬂj ]

i0 a i
1 a-X a+t) f(t)

- Re L ( j dt |, 21
ﬂbc(l_ﬂZ)’aZ_Xlz l:[a+xlj :[1 a_t t_Xl ] ( )
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—a<x,t<a, Re[..] and Im[...] denote the real and imaginary parts of the
complex quantity inside the brackets[ ], and here also, const, and const, are
arbitrary constants. From D, (21), we can reach D, using (11). Closed form

solutions are obtained after performing the various integrations in (21) using
(13) for f. These are given below in the next section assuming zero
dislocation content after unloading.

I11-2. Physical quantities associated with the interfacial crack

I11-2-1. Dislocation distributions; Relative displacements of the faces of the
crack

Closed-form expressions have been obtained for the distribution functions D,
and D, of the edge crack dislocations. These are

ch(m
Dn(x1) = ( > ) 2
2bCa” - x

—(ia® @+ 462) + 40k, — 2ix? )a}[ a- Xl] } 22)

a+x

Re{(iénl ¥ 5n2){2(0§2 —igh)(x, +2iad)

n=1and 2. D,and D, only differ by a factor i in front of the curly brackets
{}. ch is the hyperbolic cosine function. The relative displacement
¢, (n=1and 2) of the faces of the crack in the x, —direction is

4,(%) = [BD, ()0 [x <, 3)

Xy

and after integration

4, =2) Re{(iam PR {(asz o) pp- 2ol

(22) " 2a(i5+312)

1+2i6 F(X)- _a—xl
4 2a(io +3/2)

+ 2ia§[ (ioF(Y)+ F(Z))jH, (24)
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n=1and 2; F is Gauss's hypergeometric function and X, Y and Z are
arguments for F with values

=(i5+1/2,i6+1/2;i5+3/2;(a—x,)/2a)
(i6+1/2,i6+3/2i5+5/2;(a—x)/2a)
=(i6-1/2,i6+3/2;i6+5/2;(a—x,)/ 2a)

X
Y
Z

Other relations of interest (in the calculation of the crack extension force
below, for instance) are expressions for ¢, , in the vicinity of the crack tip at

x, =a. Atthe distance s=a—x,, 0<s<<a, we get using (24)

h(m5)2as
C

i0
4.(5) =" Re| (i), +0,,)(0%, ~ i, ~a0@ + iaalz(z—saj } (25)

n =1and 2.

I11-2-2. Stresses at the crack tip and crack extension force

We would like to express the total stresses &,, and &,,in the plane of the
crack in the neighbourhood of the crack tip at x, =a. These are given by the
dominant terms of (5" +&,”) in (3) at point P =(x,X,=0,x;) with
x, =a+s,, 0<s <<a. Using (3 to 6) and (22) we obtain

is
G,(s) = \E Re{(i§n1+§nz)(l+2i5)(cf§2—iafz—aéﬁ+iaa/2{;] ] (26)
1

n=1and 2. A procedure to calculate the crack extension force G has been
described by Bilby and Eshelby [11]. We have also referred to it in a number
of works [12 to 17]. This gives G as

G=lim —[% T%z(sl)@(sz)dxl +§a+f%z(sl>¢z(sz>dxlj: 27)

a

for ,, and &,,, we use (26) with s, =x, —a, and for ¢, and ¢, (25) with
s, =a+Aa—x,. We obtain
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G :M[(o—?z —asa) +(£—szj2]- (28)
4c 2

When G is defined as

G=0G,+G, (29)
With
6 —tim L 1 15 ()6 (s.)dx |, n=1and 2 30
n_AaAOA_aE-!:O-nz 1¢n2 1’n_ an ) ( )
it follows
G ach(zo)
G, =—+(-0,+9
n 2 ( nl n2) 4C
Aa 2i6
xAIimORe{(lJr2i5)n2B(i§+3/2,i5+1/2)(2—j ] n=1and 2, (31)
a—! a
Where

n=oy,—lioy,—ada +iaal2; (32)

B(x, y) is the beta function (Euler's integral of the first kind). It thus appears
that G (28) is well defined, but G, associated with individual loading modes

I and I, carries an oscillatory term with Aa indefinitely. The crack extension
force possesses the following aspects:

e G (28) the total energy release rate is well defined,

e G, and G, (30) the individual energy release rates associated with
modes Il and | carry an oscillatory term with Aaindefinitely,

o If the oscillatory term is neglected, then G, =G, =G/2 (31).

These behaviours of the crack extension force have been described earlier by
Sun and Jih [18] and Raju et al. [19].
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IV - CONFRONTATION WITH EXPERIMENTS

Experimental works provide the crack extension force (i.e. fracture
toughness) as a function of phase angle, also termed mode mix or mixity
([2 to 7], among others). The phase angle y at position P = (x;,X, =0,X;),
on the interface ahead of the crack front, with x, =a+s,, 0<s, <<a, Is
defined in terms of crack-tip stresses as

y =tan(,(5,)/ 55(s,))- (33)
Making use of (26), we write

tany = _Xotan—gl-’_yo (34)
Xo — Y, tan g,

where

6, =0oIn(s,/2a),
X, = 05, (1— 25k & +20M ),
Yo = 05(20 + (1-45%)K,@12-M) (35)

with x, =v,u,(v,/E, —v,/E,), a=ala, and M =0/,/05,. The crack
extension force G (28) can be expressed in terms of the phase angle as

| (L+457)(L+tan’ )(L+tan’ )

G=(1-dkafGM =0k =0 36
( ol "(1-25tn6,- (25 +tan 6, tany (30)
Where
2y __a?
G(M =0;x, =0)= a”(“:g Joz (37)

G(M =0;x, =0) is the value of the crack extension force when both M (the
applied shear by tension ratio) and xare zero. From (1), it may be seen that
x, =0 corresponds to z;, =0 (absence of Poisson's effect). Poisson's effect
is taken into account only when x, = 0. Other relations are of interest. We

first mention the relation between M and the phase angle y ; this is derived
from (34) as
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A + B tany

= (38)
1-25tand, — (20 + tan ) tany

Where

A =25+ (1-45%) KA/ 2+ (1-25c,A) tan 6,
B, =1-25ic,d — (26 + (1- 456%)x,A/ 2) tan 6.

It is also interesting to mention the following result on the value of the phase
angle at the minimums of the crack extension force. When x, =0, G (28) is

minimum for M =0 (ie. o,=0 ); this minimum corresponds to
G(M =0;x,=0) (37). When x,#0 , G (28) is minimum for
M =x.a/2=M_, with value

G, = (1-c,3)’°G(M =0;x, =0). (39)

It is noted that both minimums of G correspond to the equal phase angle .
(use (34) for instance) given by

20 +tané,
tany, =016 40
Ve =T 1 o5tane, (40)

we depends on & =d1In(s,/2a) and therefore on the values given to s, and

a. For illustration purpose and to confront theory with experiments, we
consider the work of Liechti and Chai [7] with the bi-material system (1)/(2)
of our modelling corresponding to the pair epoxy/glass. The parameters taken
from their work are:

6 =-0.0605; E, =2.03 GPa, v, =0.37; E, =68.95 GPa, v, =0.20.
We also use E, =244 (1+v;) and take u, = (14 + 1,)/2, v, =0.5 (see [1]).

P.N.B. ANONGBA
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Figure 2 : (a) Reduced crack extension force G=G IG(M =0;x,=0) asa
function of M =7,/ o5,, @ =20. (b) Phase angle y (degrees) as a function
of M . The identical y(=0.67°) corresponds to both M =0 (x, =0) and
M =M, =504 (x,#0); 2a=7.65 cm, s, =1.27 cm, a,=0.5 cm.

In both (a) and (b), dashed and solid curves corresponds to x, =0 and
Kk, # 0 respectively; material parameters for the system (1)/(2) correspond to
epoxy/glass (see text).
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Figure 2a is a graphical representation of G, the crack extension force G
(28) reduced by G(M = 0; x, =0) (37), as a function of M =7,/ o5,. When
k,=0, G is minimum for M =0; when Poisson's effect is taken into
account (&, # 0), this minimum is shifted to M =x.a/2=M_ (see below
(35) for a). The reduced G increases indefinitely when M moves away from
M along the opposite directions. If one takes 2a =7.65 cm (the length of

the edge starter crack of the specimens [7]) and a,=0.5cm
(a=ala, =7.65), this gives M, =5.04.

Figure 2b represents the phase angle  as a function of M (using (38)). Here
also, dashed and solid curves corresponds to x, =0 and x, = Orespectively.

We take values close to those of Liechti and Chai [7]: 2a=7.65 cm and
s, =1.27 cm; this gives . =0.67°, M =5.04. As mentioned earlier
corresponds to M =0 on the x, =0curve and M =M, on the x, = Ocurve.

For the system (1)/(2) corresponding to the epoxy/glass, z;, (1) is negative in
the x, > 0 region of the fracture specimen; this means that positive M reduces
the internal strain caused by 7z, while negative M amplifies this strain in that
region. For x, = 0 (solid curve in Figure 2b) and M =0, the phase angle is

negative with a large magnitude (about -70°); with increasing positive applied
M, the phase angle y increases drastically: M interval of [0, 10] corresponds
to y interval of [-70°, 70°] approximately. The corresponding decrease of
for negative M is much less pronounced: M interval of [-20, 0] for y interval
of [-85°, -72°] approximately. For the experimentalist, starting from zero
applied M, this is the manifestation of an apparent asymmetry. Edge-cracked
bi-material strip specimens in bi-axial loading experiments would display an
asymmetrical behaviour with respect to the direction of the applied shear

stress o, as may be noted in [7]. We further defined from (36) G(y) as

; G (1+46%)(L+tan® 6)(L+tan y)
G= — = - (41)
(L-c,d)G(M =0;x,=0) (L-25tand, - (25 +tand,) tany)

Figure 3 represents G(i) for 2a=7.65 cmand s, =1.27 cm. Also reported

are experimental values (symbol =) of the fracture toughness versus phase
angle y given by Liechti and Chai [7] (their Figure 6).
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What we do first is to identify (by simple inspection) the minimum value: we
find it to be located at y, =20°, approximately. We then report the

experimental data so that v, be read w (40); with the values given to a and
s,above, . =0.67°. Hence for each value of the phase angle provided by
Liechti and Chai [7], we add the negative value w. —w, ; then, the

experimental fracture toughness is reduced by 3.75 J/m? (taken as the

associated minimum). Comparison between G (41) and experimental points
(symbol = ) seems quite satisfactory. We use G instead of
G=G/G(M =0;x, =0) because Liechti and Chai [7] didn't take any

account of Poisson's effect in their considerations with theory. Taking into
account Poisson's effect would require to multiply the fracture toughness

values in Figure 3 by the quantity (1— &k &) (see (36)); with a, =1/2 cm

12

~

10

-50 0 50 Y/ gogrom

Figure 3 : Reduced crack extension force G (41) (solid curve) as a function
of phase angle y (degrees). Experimental points (symbol =) are those of

Liechti and Chai (1992) (their Fig. 6); 2a=7.65 cm, s, =1.27 cmand
material parameters correspond to epoxy/glass (system(1)/(2)) (see text).

And 2a=7.65 cm ( a=7.65) and epoxy/glass, this gives the value 2.6

approximately. In other words, we would consider G instead of G .
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We also note that our crack model of Figure 1 is different from the edge-
cracked bi-material system in [7] (see their Figure. 1); however this
difference seems not too serious in the graphical representation of fracture
toughness versus phase angle, on view of Figure 3.

V - CONCLUSION

The mathematical analysis of a bi-material interface crack of finite length 2a
under applied mixed mode I+11 loading, incorporating an internal shear stress
that originates from a difference in Poisson's contractions on crossing the
interface, has been performed. Various physical quantities, involved in the
discussion of the conditions for crack motion, are given in closed-form
expressions. These are the relative displacement of the faces of the crack, the
crack-tip stress and the crack extension force. This would help to a better
interpretation of experimental findings in a number of situations.
Confrontation with experiments has been done with attention to the work of
Liechti and Chai (1992) with edge-cracked bi-material epoxy/glass strip
specimens in bi-axial loading experiments.
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