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ABSTRACT

This study takes into account the existence of Poisson's effect when an
interface crack of finite length 2a, in the Ox x; —plane, is loaded in tension

o5, along the x, — direction of a Cartesian coordinate system x; . The

resultant internal shear stress z;, is identified, estimated in the plane of the
interface, and introduced in the conditions for the propagation of the crack. In
the framework of linear elasticity, z;, is assumed to be proportional to
position along the interface. The crack is represented by a continuous
distribution of two families of edge dislocations with infinitesimal Burgers
vectors. The distribution functions D, and D, of the dislocations at
equilibrium satisfy a system of two integral equations with Cauchy-type
singular kernels.

A solution is given to a class of singular integral equations which, when
applied to our modelling, permits to derive closed-form expressions for
various physical quantities pertinent to discuss crack motion, namely, the
dislocation distribution functions D, and D, with corresponding relative
displacements ¢ and ¢, of the faces of the crack, the crack-tip stresses
G,,(8) and &,,(s), and the crack extension force G. When neglecting

Poisson effect, complete agreement with previous studies on the interface
crack is achieved. Poisson's effect gives higher values to the crack extension
force.

Keywords : linear elasticity, poisson effect, dislocations, interface crack,
singular integral equations, brittle fracture mechanics.
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RESUME

Fissure d'interface sollicitéte en tension: présentation d'une
contrainte interne de cisaillement générée par I'effet Poisson

La présente étude prend en compte I'existence de I'effet Poisson au cours de
la sollicitation en tension d'une fissure d'interface. La contrainte interne de
cisaillement qui en résulte est identifiée, estimee dans le plan de l'interface et
introduite dans l'analyse des conditions de propagation de la fissure. Par
rapport a un systéme d'axes cartésiens x,, la fissure de longueur finie 2a est

située a l'origine dans le plan Oxx, avec un front droit parallele a x, et
sollicitée en tension o3, dans la directionx,. Dans le cadre de I'‘¢lasticité

linaire, nous proposons une contrainte interne induite z7, proportionnelle &

la position le long de linterface. La fissure est représentée par une
distribution continue de deux familles de dislocations coins de vecteurs de
Burgers infinitésimaux.

Les fonctions de distribution D, et D, des dislocations a I'équilibre satisfont
un systéeme de deux équations intégrales avec des singularités de type
Cauchy. Une solution est proposée pour une certaine classe d'équations
intégrales singulieres, laquelle appliqguée a notre modéle, fournit sous
expressions mathématiques fermees diverses grandeurs physiques pertinentes
pour discuter des conditions de propagation des fissures, notamment, les
fonctions de distribution des dislocations de fissure D, et D, et les
déplacements relatifs correspondant ¢ et ¢, des lévres de la fissure, les
contraintes en téte de fissure &,,(S) et &,,(S), et la force d'extension G de la
fissure. Lorsque l'effet Poisson est négligé, nos résultats sont en parfait
accord avec des études antérieures. L'effet Poisson fournit des valeurs plus
élevées de G.

Mots-clés : élasticité linéaire, effet Poisson, dislocations, fissure d'interface,
équations intégrales singuliéres, mécanique de la rupture fragile.
| - INTRODUCTION

Consider two solids (1) and (2) (Figure 1), isotropic and elastic, with
notation v;, 4, E; (i=1 and 2) to designate Poisson's ratio, shear modulus

and Young's modulus respectively. We assume that the two solids are firmly
linked along a planar interface, such that: mediums 1 and 2 occupy the
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regions X, >0 and X, <O respectively; OxX, represents the interface with
origin O at the centre. When the system is subjected to a uniform applied
tension o, at infinity along the x, —direction, the two media suffer, far from
the interface, a uniform contraction (—v,o5,/E;) (i =1 and 2) in the x, and
X, directions; this is known as Poisson's effect whose physical origin is

associated to the existence of "transverse™ microscopic bonds. The stress
field is modified by the presence of the interface so that the surrounding
medium suffers at an
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Figure 1 : Two elastic media (1) and (2) subjected to a uniform tension o>,
at infinity. Far from the interface (OxX;), the media suffered
uniform Poisson's contractions (—v,05,/E;) (i=1 and 2) in the
x, —direction. The induced shear stress z;, is indicated about the
interface. A crack of finite length 2a located at the origin is

present. This sketch corresponds to (v,o3,/ E,) > (v,05,/ E;) . See
text for additional comments.
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Arbitrary position P, with coordinates (X, X,, X;) , internal shear stresses (see

Section 2.1) z;,(P) and 72,(P) due to the difference in the values of the

Poisson's contraction in the media 1 and 2 when crossing the interface. These
shear stresses at P, for fixed x, and X,, increase in magnitude as one

approaches the interface (x, —0) and decrease to zero far away from the

interface (x, — o). In the present work, we provide an expression to z,

on the plane of the interface and then we introduce this value in an analysis of
an interface crack loaded in tension. The considered crack has a finite length

2a and is located in the Ox x; —plane, Figure 1; it extends from x, =—ato a
with a straight front running indefinitely in the x, —direction.

This study is basic because Poisson's effect is observed in almost all real
loaded materials; its contribution to the conditions for the propagation of a
crack must be evaluated in a number of experimental situations. A similar
study has been done recently for the propagation of a brittle crack under
compression in an homogeneous solid (Anongba et al. [1]); it is shown there
that Poisson's effect promotes the axial failure of the specimen. Because we
are facing a crack problem in the plane theory of elasticity, a first general
solution procedure can be to express the stresses and strains in terms of the
Airy stress function and then introduce the complex representation; the
elastic fields are real and imaginary parts of complex functions that satisfy
the boundary conditions. This method, expounded by Muskhelishvili [2],
allows a simplified mathematical treatment.

This procedure (with some variants) is effective for the determination of
stresses and relative displacement of the faces of the crack at the very tip of
the crack, particularly when a Taylor series expansion is made of the complex
analytical functions: see Erdogan [3] , Rice and Sih [4] and Rice [5];
additional references are given by Rice [5]. Another way to deal with cracks
is to represent them by a continuous distribution of dislocation families with
infinitesimal Burgers vectors. The stress field induced by the crack in the
surrounding medium will be given by the dislocations of the distribution.
Bilby and Eshelby [6] have given a basic treatment of the method where they
have treated the case of planar arrays of straight dislocations in an isotropic
elastic medium. We have used this technique extensively and also extended
the analysis to non-planar cracks by introducing sinusoidal edge and screw
dislocations (see Anongba [1, 7 to 12], Anongba and Vitek [13]). This
method has also been used for the interface crack with contact zones (see
Comninou [14, 15] and Comninou and Dundurs [16], among others).
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The first step is to determine the distribution functions of the crack
dislocation families at equilibrium under load. We generally arrive at a
system of singular integral equations involving these functions. When the
distribution functions of the dislocations have been found, we can obtain by
integration the relative displacements of the faces of the crack, the crack-tip
stresses and the crack extension force. In the present study, assuming the
crack faces to be traction free, we shall solve the problem of the interface
crack loaded in tension (taking account of lateral Poisson's contractions) by
representing the crack by a continuous distribution of straight edge
dislocations with infinitesimal Burgers vectors.

We ignore any relative displacement of the faces of the crack in the x, —
direction (i.e. no screw dislocation family is considered). The first task is to
give an expression to the induced shear stress originating from the difference
in Poisson's contraction when crossing the interface; this is done in section
2.1. In Section 2.2, our crack model is detailed and the singular integral
equations, fulfilled by the distribution functions of the crack dislocations, are
given. We obtain a solution to the integral equations in Section 3.1. The
various physical quantities required in the analysis of the conditions for the
propagation of the interface crack are expressed in Section 3.2. In Sections 4
and 5, a discussion and conclusion are made of our results, respectively.

Il - MODELLING METHODOLOGY
I1-1. Internal shear stress on the interface

For illustration purpose only of the displacement, we construct on the
continuum on both sides of the interface, an identical cubic lattice. We stress
immediately that this is not a lattice in the sense of crystallography (i.e. this is
not associated with atomic arrangement). We assume that Hooke's law is

valid throughout. Under a uniform applied tension o3, , the lattices 1 and 2
shrink differently. These are illustrated in dashed lines in Figure 1 under the
assumptionv,o3, / E, >v,05, / E,. Consider two nodes A (medium 1) and B
(medium 2) on either side of the interface which have the equal coordinate x,
(before loading) and a separation distance d (along x,) under load when the

two materials are not welded. In the welded state, A is moved horizontally by
a distance of u, <0 and B byu, > 0.

P.N. B. ANONGBA
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We ignore vertical displacement along x, . We have:

e U (x)<0 for x, >0 and u,(x) >0 for x, <0,

e U,(x)>0 for x, >0 and u,(x,) <0 for x, <0.
u, and u, are odd functions (we can restrict ourselves to x, >0). Let ¢
denotes the relative position of A with respect to B along x,, then

¢ = Xl(A)_Xl(B) =d +U1(Xl)—U2(X1) (1)
where
d= X{E_ZZ - ‘é_llJGSZ 2

In Figure 1, the displacements u, and u, at different places are represented

by short horizontal arrows and the resultant welded lattices are drawn in solid
lines. The distance d (2) increases linearly with the position x, along the

interface. We can also see from Figure 1 that the magnitude of (u, —u,)also
increases with x,, apparently in proportion to d . We may write

V. V.
¢ S S 1[ E2 Elj 22 ( )
where v, is a quantity that may actually be x -dependent; we shall assume
v, to be constant in the present study. The validity of this assumption is
stressed in the discussion (Section 4). The shear stress 7z, at point
P(x,,0, x;) then takes the form

1% v, V a _

73, (P) = w4 LA —S—us(—l - —Zjazle =—ax (4)
a, a
where  corresponds to the shear modulus about the interface and a,is the
distance between A and B along x, (Figure 1). This is that final form which

is given to the interfacial internal shear stress. Expression (4) will be used in
what follows.

11-2. Model of interfacial crack and singular integral equations

The crack in Figure 1 is assumed to be filled with two families (1 and 2) of
straight edge dislocations parallel to X, with Burgers vectors 51 =(b,0,0) and
52 =(0,b,0) in the x,and x, directions, respectively. The system is subjected

to uniform o, along x, at infinity; in addition we consider internal shear
stresses transmitted by the interface as the result of the existence of internal
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uniform Poisson stresses (—v,05,) and (-v,05,) in the x, — direction in
materials 1 and 2, respectively. The dislocation distribution function D, (x,)(

i =1 and 2) gives the number of dislocations of family i in a small interval
dx, about x,as D;(x,)dx . To find the equilibrium dislocation distributions,

we may ask for zero total force on the crack faces; on our modelling, this
gives

{‘f“ =9, (5)

0, =0
G; stands for the total stress at any point P(x,, X,,X;) in the surrounding
medium and is linked to D, ; in (5), we are only concerned with the points of
the crack faces. &;(P) is written as

o; =05+ O'(S) + O'(l) ij(z) (6)
where o corresponds to both the applied tension and the assumed uniform

internal Poisson stress, o\ to the stress induced by the interface under load
in absence of the crack and

G = '[a‘”)(xi —X;, %, %)D, (%,)dx, (n=1and 2); (7)

here criﬁ") is the stress field produced by a dislocation of family n at the
origin.

In order to write explicitly (5), we display the following results

on the interface (points P(x;, X, =0,X;)):

e 0}, iSzero except o,;
o oYisgivenby 72 (4)and o¥) =0;
e Edges with El =(b,0,0) (Family 1)

, bC 1
o5 (% =%, % =0,%;) = 7 X —x
17X
5512) (Xl o Xi’ X = 0, Xs) = _bﬂC5(X1 - X1) : (8)

e Edges with 52 =(0,b,0) (Family 2)
51(22) (X - Xi’ X, =0,%;) =bACo(x, — Xl) '
bC 1

(2) ' _ _
O, (X Xl,Xz—O,X3)—7X —XI .
1 1

(9)
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In (8) and (9), taken from Comninou and Dundurs [16], & IS
the Dirac delta function. Moreover,

_ 2mQ-0) _ 2up(+0) (10)
(5 +DA- %) (5, +)A-57)
with
_ (s, +1) — (g +1)
- (i, +1) + 11, (1, +1)

 —1<a <l (11)

_ (i, —=1) — 1, (5 = 1) ._1<IB<

1
wlc, + D+ +) " 2- 772 (12)

where x; =3—4v,. The traction free boundary condition (5)
yields

_ bC %
— @5, + 050, +bAC(D,(%,)5, - Di(%)5, )+ j

1

(13)

i=1and 2,|x|<a, and J; is the Kronecker delta. We arrive at a system of

two integral equations with Cauchy-type singular kernels with unknown
functions D, and D,. The Cauchy principal values of the integrals have to be

taken. Next, an analytical solution is given to the governing equations (13).

11 - CALCULATION RESULTS

I11-1. Analytical solution to singular integral equations

From the second of (13) and using the book by Muskhelishvili [17](see

chapter 11 "Inversion formulae for arcs"), we write

D, (x,) = s J } - X 622 bﬁCD (Xl)) (14)

Introducing (14) in the first equation of (13), we obtain
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a

J'(w/a —x2 - p%Ja’ - jD(X)l() dxl——f(xl) (15)

where

f(x,) =—axa> =X’ + BoiX,. (16)

We temporary modify our notation and write (15) as

\/1 s? Ig(t)dt j\/lfsg(t)dt:a;

c f(s) (17)

Where

g(t) = D,(at)
f(s) = f(as) (18)
(i. e. # =—p%). Equation (17) takes the form of "Example 43" (page 58) in

the book by Estrada and Kanwal [18]; by a convincing operational approach ,
it is shown there that the solution of (17) can be written as

g(s) = Wl(s) ¥,(S) (19)

YN

where i, and i, are solutions of the pair of Cauchy type integral equations

_ L (t f(s
7.(5)+ (5., 2) ‘t”(s)dt_aéc)m& +BS,: n=1and2 (20)

that satisfy the additional requirement

1+t Pof _
:l aon( e [ e @

A and B are arbitrary constants.
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The solutions of (20) (i, and i, ) can be worked out by using the treatment

of Muskhelishvili [17] (see chapter 14 "The case of continuous coefficients");
we have

16(=8,1+61)
Wn(s):l_lﬂ (;(S)+A5 +BS, j+(5n1 5p) = ( ﬂﬂ jﬁ;—zj

e

f(t)/abC+ Ad,; + BJ,, Wt

><[const15nl +const,é, , +-[((1(—)t/1+t)i5(‘5"1‘1*5"2’(t _Zs);j J (22)
-1

Where

- LA, (23)
27 \1-8)’
n=21and 2; const and const, are arbitrary constants. Using (21) and some
considerations on the nature (odd and even) of f and g, we find that
const =const,, A=—B. Then, a simple form for g follows from which is

deduced the following expression for D, the distribution function of the edge
dislocation family 1:

is]
const a—Xx
D,(x)=—— R d

1(X1) i az_xiz 6[(a+le _

i6 g i

_ 1 Re[a_xl I(a+t)6 fO g (24)

_32). a2 _y2 a-+x a-t) t—-x |
AC{l- g2 ) a® — X )Y .

—a<x,t<a, Re [..] denotes the real part of the complex quantity inside
the brackets[ ], and const is an arbitrary constant. From D, (24), we can
reach D, using (14). Closed-form solutions are obtained after performing the
various integrations in (24) using (16) for f. These are given below in the next
section.

A comparison with a known result will be mentioned: Bilby and Eshelby [6]
have given the solution of their equation (83) namely (the notations here are
theirs)
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+Aj‘-D (x)dx

with aw = —ax to be

a.2

n
2(a2 _ X2)1/2 j + ﬂ_(aZ _ X2)1/2

D (X) — ﬂ.((a 2)1/2 _

where A, «, and n are constants (see in page 136 in Bilby and Eshelby
(1968)). The first of our equation (13) with £ =0 is identical in form with

their integral equation. Our result (24) agrees with the solution for D, above
after the integration with f(t) (16) has been performed (see also below).

I11-2. Physical quantities associated with the interfacial crack

I11-2-1. Dislocation distributions; Relative displacements of the faces of
the crack

Closed-form expressions have been obtained for the distribution functions D,
and D, of the edge crack dislocations. These are

Dn(xl)— Re{(lﬁ +52){2x1(o22 2a0a)
a?— X
—i(—4a5a§2 (a2+452) - 2x? )a)}(;fj ] (25)

n=1and 2. D,and D, only differ by a factor i in front of the curly brackets
{ }. ch is the hyperbolic cosine function.

The relative displacement ¢, (n=1and 2) of the faces of the
crack in the X, —direction is

#,0) = [bD, (x)dx; , [x,|<a, (26)

and after integration

P.N. B. ANONGBA
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¢n (Xl) =

ch(zd) | (@a-x)"" | . Sl W
c Re{@@ﬁ@ﬁw{aﬂ(ﬁx) 2a(i5+3/2)F(Y)]

. _(1+2i0 a—x .
+2|ao{ 1 F(X)—M(IéFWHF(Z))jH, (27)

n=1and 2; F is Gauss's hypergeometric function and X, Y and Z are
arguments for F with values

=(i6+1/2,i6+1/2;i5+3/2;(a—x,)/ 2a)
(i6+1/2,i5+3/2;i6+5/2;(a—x)/2a)
=(i6-1/2,i5+3/2,i6 +5/2;(a—x)/2a).

X
Y
Z

Other relations of interest (in the calculation of the crack extension force
below, for instance) are expressions for ¢, , in the vicinity of the crack tip at

X, =a. Atthe distance s=a—x, 0<s<<a, we get using (27)

#(8) =

n=1and 2.

io
% V288 el (i, + 5.,)(0%, — ada + iaalz(%) } (28)

I11-2-2. Stresses at the crack tip and crack extension force

We would like to express the total stresses &, and &, in the plane of the
crack in the neighbourhood of the crack tip at x, =a . These are given by the

dominant terms of (¥ +&?) in (6) at point P=(x,X,=0,%;) with
X =a+s;, 0<s, <<a. Using (6 to 9) and (25) we obtain

io
G,,(8)= /i Re{(iénl +0,,)d+ 2i5)(a§2 —aoa + iaa/Z{i) } (29)
2s, 2a
n=1and 2.
A procedure to calculate the crack extension force G has been described by

Bilby and Eshelby [6]. We have also referred to it in a number of works (see
Anongba [1, 8 to 11]).
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This gives

a+Aa

G=lim é (%Taalz(sl)@(sz)d)q +% ! 522(s1)¢2(sz)dx1} (30)

for 5,, and &,,, we use (29) with s, =x, —a, and for ¢ and
¢, (28) with s, =a+ Aa—x,. We obtain

G - 45 [(052 —acaf + (Ej ] . (31)
4C 2

When G is defined as

G=G +G, (32)

with

G, = lim—— laﬁ? (5).(5,)dx |, n=1and 2 (33)
n A&»OZXa 2 ) n2\~1/%n 2 ' '

it follows

ach(zo)
4C

G, =5 +(-5,+5,)

2i6
x lim Re{(1+ 2i5)7728(i5+3/2,i5+1/2)(%j } n=1and 2, (34)

where
n=o,, —aox +iaal 2; (35)

B(X, y) is the beta function (Euler's integral of the first kind). It thus appears
that G (31) is well defined, but G, associated with individual loading modes

| and II, carries an oscillatory term with Aa indefinitely (see further
comments below).
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IV - DISCUSSION

When a material is loaded in a given direction, an internal stress develops in
the corresponding perpendicular plane. This intrinsic phenomenon, common
to most materials, is known as the Poisson's effect. In composites, additional
shear stresses are induced across the interfaces. The present work is a first
attempt to include Poisson's effect formally in the mathematical analysis of
the conditions for crack propagation. This has been made possible by using a
simple crack geometry, namely the interface crack of finite length 2a, loaded
in tension in an infinitely extended surrounding medium. The framework is
continuum linear elasticity. The study suggests that the induced shear stress
(4) depends linearly on position along the interface. Physical quantities
associated with the interface, v, (3) and x, and a,(4), are evidenced. v, is

the ratio of ¢ (distance along x, between A and B (Figure 1) in the welded

state under load) by d (the corresponding distance in the non-welded state);
we have

_ P g W) —Uy(x)
v==1+ - . (36)

A maximum value for v, isone (u, —u, =0) and a minimum is zero

(u,—u, =—d). We have assumed that v, is constant in our analysis. By a
direct inspection of Figure 1, it may be seen that this is certainly correct over
a relatively large x, —interval. We shall use below the relation (31) for G
with the aim of estimating the magnitude of the Poisson's effect; it is clear
that taking v, =1/2 will be sufficient for this purpose. The other quantities
U, and a, (4) are the shear modulus about the interface and the separation
distance along x, between two points A and B, located on either side of the
interface, that suffered the action of the shear stress (4).

The magnitude of a, must be sufficiently small but presumably not down to

the atomic level; it would be better on the micron scale. Before we estimate
the magnitude of Poisson's effect, it is interesting to compare our findings
with previous results on the interface crack under load. A first advantage of
the present work is that it gives various quantities, associated with the loaded
crack, in closed-form expressions. This has been made possible with the help
of the solution (24) to a class of singular integral equations (15). With D, and

D, (25) on the one hand, and relative displacements ¢ and ¢, of the faces
of the crack (27) on the other hand, a complete knowledge of the whole shape
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of the crack under load is achieved from x, =—a to a. Our results agree with

those obtained when Poisson's effect is neglected (i.e. & (4) equal to zero).
We can mention that G (31) with & =0 is identical to the corresponding one
displayed by Hutchinson [19] (see his relations (5) and (6)). Our analysis also
reveals already known aspects on the crack extension force:

e G (31) the total energy release rate is well defined,
e G, and G, (33) the individual energy release rates
associated with modes Il and I carry an oscillatory term
with saindefinitely,
e If the oscillatory term is neglected, then
G =G, =G/2(34).
The above behaviours for the crack extension force have been described
earlier by Sun and Jih [20] and Raju et al. [21].
An estimate of the magnitude of the Poisson's effect in the conditions for the
propagation of the interfacial crack loaded in tension is now under way in

what follows. We define AG = (G(a) - G(a = 0))/ G(a =0) where G(@) s
the value of G (31) whena #0; G(ax =0), the value of G when & =0,
neglects Poisson's effect. We have

AG =k, {% (ij _ gg(iJ} (37)
4 a, a,

where

v, Vv,
K.=V — =, 38
S SILIS(E]- Ezj ( )

We further defined =a/a,. AG is minimum for & =&, given
by 6AG(a,)/éd = 0. This gives

~ 45

* Kk (1+45%) (39)
and

=~ 4652
AG(E)=-—2— . 40
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Also, AG is zero for either & =3, =0 or & =3, with

~ 80

a.2 = m . (41)

.1
AG

0.5

0 ; : : :
0 10 20 30 40 50
alag
Figure 2 : Positive relative values AG (37) of the reduced crack extension
force G =G(a)/G(a =0) as a function of crack half length a
(normalized by a,). Elastic constants of the system (1)/(2)

correspond to MgO/Ni (see text).

AGis plotted against a in Figure 2 for the system (1)/(2) corresponding to
MgO/Ni with associated parameters taken from Hutchinson et al. [22]:

5=-0.0049; 14, =1.283x10"N/m*, v, =0.175; u, =0.808x10"N/m?*,
v, =0.314. The shear modulus is for polycrystalline materials. We also use
E =2u(+v,) and take u, =, =09x10"N/m? | v, =05 . AG
(Figure 2) decreases from zero ( a=0 ) to a negative minimum
Aé(ﬁe):—9.6><10’5 (a,=0.48) and then increases indefinitely with a

taking again a value AG(a,)=0 fora, =0.97. Abovea =a,, AG takes a
value of about one at a =50. If an increase in the magnitude of the crack
extension force is to be interpreted as a promotion of crack growth, Figure 2
suggests that Poisson effect acts against interfacial crack extension for very
small crack length but acts in favour of crack propagation for sufficiently
large cracks.

P.N. B. ANONGBA
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We would like to stress that the way individual modes | and 11 (opening and
sliding, respectively) are interconnected is intriguing. Although the externally
applied loading o3, is in the x, —direction (opening mode | loading), the
sliding mode 11 seems to contribute on the equal scale to the crack extension
force (see (31) to (34)). We know from studies on crack propagation in
homogeneous materials that the crack kinks (out of the initial crack Ox; X, —

plane) when the sliding mode Il contribution to G increases (for references,
see in Anongba [11]). What is the trend for the interfacial crack? Much less
is known. Experimental measurement of the stress to fracture an interface
crack of length 2a, at the centre of the interface, as a function of crack half
length (same geometry as in Figure 1) is highly desirable to check basic
modelling, in addition to interfacial surface energy measurements. In

conclusion, because AG may be appreciably large, Poisson's effect is
important for the conditions of the propagation of the interface crack loaded
in tension.

V - CONCLUSION

The present study draws attention on the existence of an internal shear stress
that originates from a difference in Poisson's contractions present in two
different solids (1) and (2) firmly welded along a planar interface loaded in
tension. The objective is to evaluate the contribution of this special internal
shear stress to the conditions for the propagation of a brittle interfacial crack,
of finite length, located at the centre of the interface. The framework is linear
elasticity coupled with brittle fracture mechanics where the crack is
represented by a continuous distribution of dislocations with infinitesimal
Burgers vectors. The following points are brought into conclusion:

» The interfacial Poisson internal shear stress is assumed to be
proportional to position along the interface.

» An analytical solution is given to a class of integral equations with
Cauchy-type singular kernel involving the distribution functions of
the interfacial crack dislocations.

» Closed-form expressions are given to the dislocation distribution
functions, crack-tip stress and crack extension force.

» The crack extension force increases with crack length, for sufficiently
large cracks.

In closure, detailed studies (both experimental and theoretical) on the
contribution of the internal shear stress (promoted by Poisson's effect) to the
conditions for the propagation of a crack, on or crossing the interface in
composites, reveal all their importance.

P.N. B. ANONGBA
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