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ABSTRACT 

 

This study takes into account the existence of Poisson's effect when an 

interface crack of finite length 2a,  in the 31xOx plane, is loaded in tension 

a

22  along the 2x direction of a Cartesian coordinate system ix . The 

resultant internal shear stress a

12  is identified, estimated in the plane of the 

interface, and introduced in the conditions for the propagation of the crack. In 

the framework of linear elasticity, a

12 is assumed to be proportional to 

position along the interface. The crack is represented by a continuous 

distribution of two families of edge dislocations with infinitesimal Burgers 

vectors. The distribution functions 1D and 2D of the dislocations at 

equilibrium satisfy a system of two integral equations with Cauchy-type 

singular kernels.  

 

A solution is given to a class of singular integral equations which, when 

applied to our modelling, permits to derive closed-form expressions for 

various physical quantities pertinent to discuss crack motion, namely, the 

dislocation distribution functions 1D  and 2D  with corresponding relative 

displacements 1  and 2  of the faces of the crack, the crack-tip stresses 

)(12 s  and )(22 s , and the crack extension force G. When neglecting 

Poisson effect, complete agreement with previous studies on the interface 

crack is achieved. Poisson's effect gives higher values to the crack extension 

force.  

 

Keywords : linear elasticity, poisson effect, dislocations, interface crack, 

singular integral equations, brittle fracture mechanics. 
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RÉSUMÉ 
 

Fissure d'interface sollicitée en tension: présentation d'une 

contrainte interne de cisaillement générée par l'effet Poisson 

 

La présente étude prend en compte l'existence de l'effet Poisson au cours de 

la sollicitation en tension d'une fissure d'interface. La contrainte interne de 

cisaillement qui en résulte est identifiée, estimée dans le plan de l'interface et 

introduite dans l'analyse des conditions de propagation de la fissure. Par 

rapport à un système d'axes cartésiens ix ,  la fissure de longueur finie 2a est 

située à l'origine dans le plan 31xOx  avec un front droit parallèle à 3x  et 

sollicitée en tension a

22 dans la direction 2x . Dans le cadre  de l'élasticité 

linéaire, nous proposons une contrainte interne induite a

12  proportionnelle à 

la position le long de l'interface. La fissure est représentée par une 

distribution continue de deux familles de dislocations coins de vecteurs de 

Burgers infinitésimaux.  

 

Les fonctions de distribution 1D et 2D des dislocations à l'équilibre satisfont 

un système de deux équations intégrales avec des singularités de type 

Cauchy. Une solution est proposée pour une certaine classe d'équations 

intégrales singulières, laquelle appliquée à notre modèle, fournit sous 

expressions mathématiques fermées diverses grandeurs physiques pertinentes 

pour discuter des conditions de propagation des fissures, notamment, les 

fonctions de distribution des dislocations de fissure 1D et 2D  et  les 

déplacements relatifs correspondant 1  et 2  des lèvres de la fissure, les 

contraintes en tête de fissure )(12 s  et )(22 s , et la force d'extension G de la 

fissure. Lorsque l'effet Poisson est négligé, nos résultats sont en parfait 

accord avec des études antérieures. L'effet Poisson fournit des valeurs plus 

élevées de G. 

 

Mots-clés : élasticité linéaire, effet Poisson, dislocations, fissure d'interface, 

équations intégrales singulières, mécanique de la rupture fragile. 

 

 

I - INTRODUCTION 

 

Consider two solids (1) and (2) (Figure 1), isotropic and elastic, with 

notation i , i , iE ( 1i  and 2) to designate Poisson's ratio, shear modulus 

and Young's modulus respectively. We assume that the two solids are firmly 

linked along a planar interface, such that: mediums 1 and 2 occupy the 
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regions 02 x  and 02 x  respectively; 31xOx represents the interface with 

origin O at the centre. When the system is subjected to a uniform applied 

tension a

22 at infinity along the 2x direction, the two media suffer, far from 

the interface, a uniform contraction )/( 22 i

a

i E  ( 1i  and 2) in the 1x  and 

3x  directions; this is known as Poisson's effect whose physical origin is 

associated to the existence of  "transverse" microscopic bonds. The stress 

field is modified by the presence of the interface so that the surrounding 

medium suffers at an  

 

 
 

Figure 1 : Two elastic media (1) and (2) subjected to a uniform tension a

22  

at infinity. Far from the interface ( 31xOx ), the media suffered 

uniform Poisson's contractions )/( 22 i

a

i E  ( 1i  and 2) in the 

1x direction. The induced shear stress a

12  is indicated about the 

interface. A crack of finite length 2a located at the origin is 

present. This sketch corresponds to )/()/( 12212222 EE aa   . See 

text for additional comments.  
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Arbitrary position P, with coordinates ),,( 321 xxx , internal shear stresses (see 

Section 2.1) )(12 Pa  and )(23 Pa due to the difference in the values of the 

Poisson's contraction in the media 1 and 2 when crossing the interface. These 

shear stresses at P, for fixed 1x  and 3x , increase in magnitude as one 

approaches the interface ( 02 x ) and decrease to zero far away from the 

interface ( 2x ).  In the present work, we provide an expression to a

12

on the plane of the interface and then we introduce this value in an analysis of 

an interface crack loaded in tension. The considered crack has a finite length 

2a and is located in the 31xOx plane, Figure 1; it extends from ax 1 to a 

with a straight front running indefinitely in the 3x direction.  

 

This study is basic because Poisson's effect is observed in almost all real 

loaded materials; its contribution to the conditions for the propagation of a 

crack must be evaluated in a number of experimental situations. A similar 

study has been done recently for the propagation of a brittle crack under 

compression in an homogeneous solid (Anongba et al. [1]); it is shown there 

that Poisson's effect promotes the axial failure of the specimen. Because we 

are facing a crack problem in the plane theory of elasticity, a first general 

solution procedure can be to express the stresses and strains in terms of the 

Airy stress function and then introduce the complex representation; the 

elastic fields are real and imaginary parts of complex functions that satisfy 

the boundary conditions. This method, expounded by Muskhelishvili [2], 

allows a simplified mathematical treatment.  
 

This procedure (with some variants) is effective for the determination of 

stresses and relative displacement of the faces of the crack at the very tip of 

the crack, particularly when a Taylor series expansion is made of the complex 

analytical functions: see Erdogan [3] , Rice and Sih [4] and  Rice [5]; 

additional references are given by Rice [5]. Another way to deal with cracks 

is to represent them by a continuous distribution of dislocation families with 

infinitesimal Burgers vectors. The stress field induced by the crack in the 

surrounding medium will be given by the dislocations of the distribution. 

Bilby and Eshelby [6] have given a basic treatment of the method where they 

have treated the case of planar arrays of straight dislocations in an isotropic 

elastic medium. We have used this technique extensively and also extended 

the analysis to non-planar cracks by introducing sinusoidal edge and screw 

dislocations (see Anongba [1, 7 to 12], Anongba and Vitek [13]). This 

method has also been used for the interface crack with contact zones (see 

Comninou [14, 15] and Comninou and Dundurs [16], among others).  
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The first step is to determine the distribution functions of the crack 

dislocation families at equilibrium under load. We generally arrive at a 

system of singular integral equations involving these functions. When the 

distribution functions of the dislocations have been found, we can obtain by 

integration the relative displacements of the faces of the crack, the crack-tip 

stresses and the crack extension force. In the present study, assuming the 

crack faces to be traction free, we shall solve the problem of the interface 

crack loaded in tension (taking account of lateral Poisson's contractions) by 

representing the crack by a continuous distribution of straight edge 

dislocations with infinitesimal Burgers vectors.  

 

We ignore any relative displacement of the faces of the crack in the 3x

direction (i.e. no screw dislocation family is considered). The first task is to 

give an expression to the induced shear stress originating from the difference 

in Poisson's contraction when crossing the interface; this is done in section 

2.1. In Section 2.2, our crack model is detailed and the singular integral 

equations, fulfilled by the distribution functions of the crack dislocations, are 

given. We obtain a solution to the integral equations in Section 3.1. The 

various physical quantities required in the analysis of the conditions for the 

propagation of the interface crack are expressed in Section 3.2. In Sections 4 

and 5, a discussion and conclusion are made of our results, respectively.  

 

 

II - MODELLING METHODOLOGY 

 

II-1. Internal shear stress on the interface 

 

For illustration purpose only of the displacement, we construct on the 

continuum on both sides of the interface, an identical cubic lattice. We stress 

immediately that this is not a lattice in the sense of crystallography (i.e. this is 

not associated with atomic arrangement). We assume that Hooke's law is 

valid throughout.  Under a uniform applied tension a

22 , the lattices 1 and 2 

shrink differently. These are illustrated in dashed lines in Figure 1 under the 

assumption 12212222 // EE aa   . Consider two nodes A (medium 1) and B 

(medium 2) on either side of the interface which have the equal coordinate 1x  

(before loading) and a separation distance d (along 1x ) under load when the 

two materials are not welded. In the welded state, A is moved horizontally by 

a distance of 01 u  and B by 02 u .  
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We ignore vertical displacement along 2x . We have:  

 0)( 11 xu  for 01 x  and 0)( 11 xu  for 01 x ,  

 0)( 12 xu  for 01 x  and 0)( 12 xu  for 01 x .  

1u  and 2u  are odd functions (we can restrict ourselves to 01 x ).  Let   

denotes the relative position of A with respect to B along 1x , then  
 

)()()()( 121111 xuxudBxAx                                         (1) 

where  

a

EE
xd 22

1

1

2

2
1 










                                                                     (2) 

 

In Figure 1, the displacements 1u  and 2u at different places are represented 

by short horizontal arrows and the resultant welded lattices are drawn in solid 

lines. The distance d  (2) increases linearly with the position 1x  along the 

interface. We can also see from Figure 1 that the magnitude of )( 21 uu  also 

increases with 1x , apparently in proportion to d . We may write 

a

ss
EE

xd 22

1

1

2

2
1 


 








                                                        (3) 

where s  is a quantity that may actually be 1x -dependent; we shall assume  

s  to be constant in the present study. The validity of this assumption is 

stressed in the discussion (Section 4). The shear stress a

12  at point 

),0,( 31 xxP  then takes the form  

s

s

a

a
P


 )(12 1122

2

2

1

1 xx
EEa

a

s

ss 










                       (4) 

 

where s corresponds to the shear modulus about the interface and sa is the 

distance between A and B along 2x  (Figure 1). This is that final form which 

is given to the interfacial internal shear stress. Expression (4) will be used in 

what follows.  

 

II-2. Model of interfacial crack and singular integral equations 

 

The crack in Figure 1 is assumed to be filled with two families (1 and 2) of 

straight edge dislocations parallel to 3x  with Burgers vectors )0,0,(1 bb 


 and 

)0,,0(2 bb 


 in the 1x and 2x  directions, respectively. The system is subjected 

to uniform a

22  along 2x  at infinity; in addition we consider internal shear 

stresses transmitted by the interface as the result of the existence of internal 
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uniform Poisson stresses )( 221

a  and )( 222

a  in the 1x direction in 

materials 1 and 2, respectively. The dislocation distribution function )( 1xDi (

1i  and 2) gives the number of dislocations of family i in a small interval 

1dx about 1x as 11)( dxxDi . To find the equilibrium dislocation distributions, 

we may ask for zero total force on the crack faces; on our modelling, this 

gives  

 









0

0

22

12




;                                                                                     (5) 

ij  stands for the total stress at any point ),,( 321 xxxP in the surrounding 

medium and is linked to iD ; in (5), we are only concerned with the points of 

the crack faces. )(Pij  is written as  
 

)2()1()(

ijij

s

ij

a

ijij                                                           (6) 

where a

ij  corresponds to both the applied tension and the assumed uniform 

internal Poisson stress, )(s

ij  to the stress induced by the interface under load 

in absence of the crack and  
 

'

1

'

132

'
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)()( )(),,( dxxDxxxx n

a

a

n

ij

n

ij 


   ( 1n  and 2);                  (7) 

here )(n

ij  is the stress field produced by a dislocation of family n at the 

origin.  

In order to write explicitly (5), we display the following results 

on the interface (points ),0,( 321 xxxP  ):  

 a

12  is zero except a

22 ; 

 )(

12

s is given by a

12  (4) and 0)(

22 s ; 

 Edges with )0,0,(1 bb 


 (Family 1) 

'
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'
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)1(
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1
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
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'
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22 xxCbxxxx   ;                                  (8) 

 Edges with )0,,0(2 bb 


 (Family 2) 
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1132

'
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, 
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In (8) and (9), taken from Comninou and Dundurs [16],   is 

the Dirac delta function. Moreover,  

 

)1)(1(

)1(2

)1)(1(

)1(2
2

2

2

2

1

1




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
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
C                                      (10) 

with 

)1()1(

)1()1(

1221

1221









 ; 11                                      (11) 
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1221
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


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 ;

2

1

2

1
                                   (12) 

 

where ii  43 . The traction free boundary condition (5) 

yields 

  0
)(

)()( '

1'

11

'

1
21111222211 


 



dx
xx

xDbC
xDxDCbx

a

a

i
iii

a

i


 ,   (13) 

 

i 1 and 2, ax 1 , and ij  is the Kronecker delta. We arrive at a system of 

two integral equations with Cauchy-type singular kernels with unknown 

functions 1D  and 2D . The Cauchy principal values of the integrals have to be 

taken. Next, an analytical solution is given to the governing equations (13).  

 

 

III - CALCULATION RESULTS 

 

III-1. Analytical solution to singular integral equations 

 

From the second of (13) and using the book by Muskhelishvili [17](see 

chapter 11 "Inversion formulae for arcs"), we write  

 

  '

1'

11

'

1122

2

1

2

2'

1

2
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)(1
)( dx

xx

xCDb

xa

xa

bC
xD
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a







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




                  (14) 

 

 

Introducing (14) in the first equation of (13), we obtain 
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)(
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1

'

1

1

'

1

'
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1
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1
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dx
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xaxa

a

a
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




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                (15) 

 

where 

122

2

1

2

11)( xxaxxf a  .                                               (16) 

 

We temporary modify our notation and write (15) as  

 

)(
1)(1)(1 21

1

21

1

2
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abC

dt
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tgt
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tgs



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Where 

 

 i

asfsf

atDtg







)()(

)()( 1

                                                                            (18) 

 

(i. e. 22   ). Equation (17) takes the form of "Example 43" (page 58) in 

the book by Estrada and Kanwal [18]; by a convincing operational approach , 

it is shown there that the solution of (17) can be written as  

 

2
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s
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


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where 1  and 2 are solutions of the pair of Cauchy type integral equations  
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that satisfy the additional requirement  
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A and B are arbitrary constants.  
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The solutions of (20) ( 1  and 2 ) can be worked out by using the treatment 

of Muskhelishvili [17] (see chapter 14 "The case of continuous coefficients"); 

we have  
)(
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Where  
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1n  and 2; 1const  and 2const  are arbitrary constants. Using (21) and some 

considerations on the nature (odd and even) of f  and g, we find that 

21 constconst  , BA  . Then, a simple form for g follows from which is 

deduced the following expression for 1D  the distribution function of the edge 

dislocation family 1:  
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atxa  ,1 , Re [...] denotes the real part of the complex quantity inside 

the brackets[ ], and const  is an arbitrary constant. From 1D  (24), we can 

reach 2D  using (14). Closed-form solutions are obtained after performing the 

various integrations in (24) using (16) for f. These are given below in the next 

section.  

A comparison with a known result will be mentioned: Bilby and Eshelby [6] 

have given the solution of their equation (83) namely (the notations here are 

theirs) 
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where A,  , and n are constants (see in page 136 in Bilby and Eshelby 

(1968)). The first of our equation (13) with 0  is identical in form with 

their integral equation. Our result (24) agrees with the solution for yD above 

after the integration with f(t) (16) has been performed (see also below).  

 

III-2. Physical quantities associated with the interfacial crack  

 

III-2-1. Dislocation distributions; Relative displacements of the faces of 

the crack 

 

Closed-form expressions have been obtained for the distribution functions 1D

and 2D  of the edge crack dislocations. These are  
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1n and 2. 1D and 2D  only differ by a factor i  in front of the curly brackets

 . ch  is the hyperbolic cosine function.  

The relative displacement n ( 1n and 2) of the faces of the 

crack in the nx direction is  
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 and after integration  
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1n and 2; F is Gauss's hypergeometric function and X, Y and Z are 

arguments for F with values  

 

 axaiiiX 2/)(;2/3;2/1,2/1 1   

 axaiiiY 2/)(;2/5;2/3,2/1 1   

 axaiiiZ 2/)(;2/5;2/3,2/1 1  .  

 

Other relations of interest (in the calculation of the crack extension force 

below, for instance) are expressions for n , in the vicinity of the crack tip at 

ax 1 . At the distance 1xas  , as 0 , we get using (27) 
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1n and 2.  

 

III-2-2. Stresses at the crack tip and crack extension force  

 

We would like to express the total stresses 12  and 22 in the plane of the 

crack in the neighbourhood of the crack tip at ax 1 . These are given by the 

dominant terms of )( )2()1(

ijij    in (6) at point ),0,( 321 xxxP   with 

11 sax  , as  10 . Using (6 to 9) and (25) we obtain  

 

 
























i

a

nnn
a

s
iaaii

s

a
s

2
2/)21)((Re

2
)( 1

2221

1

12 ,  (29) 

1n and 2. 

 

A procedure to calculate the crack extension force G has been described by 

Bilby and Eshelby [6]. We have also referred to it in a number of works (see 

Anongba [1, 8 to 11]).  
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This gives  
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for 12  and 22 , we use (29) with axs  11 , and for 1  and 

2  (28) with 12 xaas  . We obtain 
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When G is defined as  
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it follows 
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where 

 

2/22  iaaa  ;                                                           (35) 

 

),( yxB  is the beta function (Euler's integral of the first kind). It thus appears 

that G (31) is well defined, but nG , associated with individual loading modes 

I and II, carries an oscillatory term with a  indefinitely (see further 

comments below).  
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IV - DISCUSSION 

 

When a material is loaded in a given direction, an internal stress develops in 

the corresponding perpendicular plane. This intrinsic phenomenon, common 

to most materials, is known as the Poisson's effect.  In composites, additional 

shear stresses are induced across the interfaces. The present work is a first 

attempt to include Poisson's effect formally in the mathematical analysis of 

the conditions for crack propagation. This has been made possible by using a 

simple crack geometry, namely the interface crack of finite length 2a, loaded 

in tension in an infinitely extended surrounding medium. The framework is 

continuum linear elasticity. The study suggests that the induced shear stress 

(4) depends linearly on position along the interface. Physical quantities 

associated with the interface, s  (3) and s  and sa (4), are evidenced. s  is 

the ratio of   (distance along 1x  between A and B (Figure 1) in the welded 

state under load) by d  (the corresponding distance in the non-welded state); 

we have 

 

d

xuxu

d
s

)()(
1 1211 
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
 .                                                     (36) 

 

A maximum value for s  is one ( 021  uu ) and a minimum is zero  

( duu  21 ). We have assumed that s  is constant in our analysis. By a 

direct inspection of Figure 1, it may be seen that this is certainly correct over 

a relatively large 1x interval. We shall use below the relation (31) for G 

with the aim of estimating the magnitude of the Poisson's effect; it is clear 

that taking 2/1s  will be sufficient for this purpose. The other quantities 

s  and sa  (4) are the shear modulus about the interface and the separation 

distance along 2x between two points A and B, located on either side of the 

interface, that suffered the action of the shear stress (4).  

 

The magnitude of sa  must be sufficiently small but presumably not down to 

the atomic level; it would be better on the micron scale. Before we estimate 

the magnitude of Poisson's effect, it is interesting to compare our findings 

with previous results on the interface crack under load. A first advantage of 

the present work is that it gives various quantities, associated with the loaded 

crack, in closed-form expressions. This has been made possible with the help 

of the solution (24) to a class of singular integral equations (15). With 1D  and 

2D  (25) on the one hand, and relative displacements 1  and 2  of the faces 

of the crack (27) on the other hand, a complete knowledge of the whole shape 
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of the crack under load is achieved from ax 1  to a. Our results agree with 

those obtained when Poisson's effect is neglected (i.e.   (4) equal to zero). 

We can mention that G (31) with 0  is identical to the corresponding one 

displayed by Hutchinson [19] (see his relations (5) and (6)). Our analysis also 

reveals already known aspects on the crack extension force:  

 

 G (31) the total energy release rate is well defined, 

 1G  and 2G  (33) the individual energy release rates 

associated with modes II and I carry an oscillatory term 

with a indefinitely, 

 If the oscillatory term is neglected, then 

2/21 GGG  (34).  

The above behaviours for the crack extension force have been described 

earlier by Sun and Jih [20] and Raju et al. [21].  

An estimate of the magnitude of the Poisson's effect in the conditions for the 

propagation of the interfacial crack loaded in tension is now under way in 

what follows. We define   )0(/)0()(
~

  GGGG  where )(G is 

the value of G (31) when 0 ; )0( G , the value of G when 0 , 

neglects Poisson's effect. We have 
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We further define saaa /~  . G
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Also, G
~

  is zero for either 0~~
1  aa  or 2

~~ aa   with  
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Figure 2 : Positive relative values G

~
  (37) of the reduced crack extension 

force )0(/)(
~

  GGG  as a function of crack half length a 

(normalized by sa ). Elastic constants of the system (1)/(2) 

correspond to MgO/Ni (see text). 

 

G
~

 is plotted against a~  in Figure 2 for the system (1)/(2) corresponding to 

MgO/Ni with associated parameters taken from Hutchinson et al. [22]: 

0049.0 ; 211

1 /10283.1 mN , 175.01  ; 211

2 /10808.0 mN , 

314.02  . The shear modulus is for polycrystalline materials. We also use 

)1(2 iiiE    and take
211

2 /109.0 mNs   , 5.0s . G
~

      

(Figure 2) decreases from zero ( 0~ a ) to a negative minimum 
5106.9)~(

~  eaG  ( 48.0~ ea ) and then increases indefinitely with a~

taking again a value 0)~(
~

2  aG  for 97.0~
2 a . Above 2

~~ aa  , G
~

  takes a 

value of about one at 50~ a . If an increase in the magnitude of the crack 

extension force is to be interpreted as a promotion of crack growth, Figure 2 

suggests that Poisson effect acts against interfacial crack extension for very 

small crack length but acts in favour of crack propagation for sufficiently 

large cracks.  
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We would like to stress that the way individual modes I and II (opening and 

sliding, respectively) are interconnected is intriguing. Although the externally 

applied loading a

22  is in the 2x direction (opening mode I loading), the 

sliding mode II seems to contribute on the equal scale to the crack extension 

force (see (31) to (34)). We know from studies on crack propagation in 

homogeneous materials that the crack kinks (out of the initial crack 31xOx

plane) when the sliding mode II contribution to G increases (for references, 

see in Anongba [11]). What is the trend for the interfacial crack?  Much less 

is known. Experimental measurement of the stress to fracture an interface 

crack of length 2a, at the centre of the interface, as a function of crack half 

length (same geometry as in Figure 1) is highly desirable to check basic 

modelling, in addition to interfacial surface energy measurements. In 

conclusion, because G
~

  may be appreciably large, Poisson's effect is 

important for the conditions of the propagation of the interface crack loaded 

in tension.  

 

 

V - CONCLUSION  
 

The present study draws attention on the existence of an internal shear stress 

that originates from a difference in Poisson's contractions present in two 

different solids (1) and (2) firmly welded along a planar interface loaded in 

tension. The objective is to evaluate the contribution of this special internal 

shear stress to the conditions for the propagation of a brittle interfacial crack, 

of finite length, located at the centre of the interface. The framework is linear 

elasticity coupled with brittle fracture mechanics where the crack is 

represented by a continuous distribution of dislocations with infinitesimal 

Burgers vectors. The following points are brought into conclusion:  
 

 The interfacial Poisson internal shear stress is assumed to be 

proportional to position along the interface. 

  An analytical solution is given to a class of integral equations with 

Cauchy-type singular kernel involving the distribution functions of 

the interfacial crack dislocations.  

 Closed-form expressions are given to the dislocation distribution 

functions, crack-tip stress and crack extension force.  

 The crack extension force increases with crack length, for sufficiently 

large cracks.  
 

In closure, detailed studies (both experimental and theoretical) on the 

contribution of the internal shear stress (promoted by Poisson's effect) to the 

conditions for the propagation of a crack, on or crossing the interface in 

composites, reveal all their importance. 
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