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ABSTRACT 

 

An estimate is made of the contribution of Poisson effect to the conditions 

for the propagation of a planar crack subjected to uniform compression in 

the framework of linear isotropic elasticity. When comparison is made with 

tension, )/1(  times larger stress is required to break a fracture specimen in 

compression ( is Poisson’s ratio). The treatment considers an inclined 

planar crack with respect to the applied compression direction and provides 

an expression of the crack extension force G per unit length of the crack 

front as a function of the inclination slope p of the crack. A representation of 

the crack by a continuous distribution of edge dislocations with infinitesimal 

Burgers vectors is adopted. It is shown that the inclined crack can be 

described by two distinct dislocation families responding to the applied 

compression and the induced internal Poisson tension, respectively. 

 
Keywords : continuum mechanics, crack propagation, dislocations, Poisson 

                    effect, fracture mechanisms. 
 

 

RÉSUMÉ 

Fissures fragiles sous compression : introduction de l’effet 

Poisson  

 

Une estimation est faite de la contribution de l’effet Poisson aux conditions 

de propagation d’une fissure plane soumise à une compression uniforme 
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dans le cadre de l’élasticité linéaire. En termes de contrainte et lorsqu’une 

comparaison est faite avec la tension, il est )/1(  fois plus difficile de casser 

une éprouvette d’essai en compression ( est le rapport de Poisson). 

L’analyse considère une fissure inclinée par rapport à la direction de la 

compression et donne une expression de la force d’extension G de la fissure 

par unité de longueur du front de fissure en fonction de la pente 

d’inclinaison p. La représentation d’une fissure par une distribution continue 

de dislocations avec des vecteurs de Burgers infinitésimaux est adoptée. Il 

est montré que la fissure inclinée peut être décrite par deux familles 

distinctes de dislocation obéissant à la compression appliquée et à la tension 

de Poisson induite, respectivement.  

 

Mots-clés : mécanique des milieux continus, propagation de fissure,  

                    dislocations, effet Poisson, mécanismes de rupture.  

 

 

I - INTRODUCTION 

 

Consider as an illustration in Figure 1 a rectangular fracture specimen with 

large dimensions, isotropic and elastic. Initially the specimen is dashed. 

With respect to a Cartesian coordinate system ix  and under the action of 

uniform compressive stress ( a ) along the 1x direction, the specimen 

shrinks in the 1x direction but extends according to Poisson in the 2x  and 

3x  directions; the shape then taken by the specimen is in solid (Figure 1). 

To the specimen is attached a planar crack with finite dimensions along 1x  

and 2x  but infinite in the calculations (below) in the 3x direction. The 

crack is symmetrical with respect to 3Ox , inclined by an angle   with 

respect to 31xOx  and has a straight front along 3x . When the crack is in 

31xOx  ( 0 ), considering the applied compression ( a ) only, we show 

in the following that the crack extension force G per unit length of the crack 

front is zero. However this result is in conflict with numerous experimental 

observations revealing that the crack is able to propagate axially along 1x . 

We shall come back to the experimental evidences in Section 4. At this 

point, we only stress that in addition to an extension along 1x , there is an 

opening of the crack along 2x . Things happen as if the crack was subjected 

to a tension in the 2x direction. A possible origin of an induced tension is 

the well-known Poisson effect which, in the framework of linear elasticity 

obeying Hooke’s law, leads to a stress ( a ) directed along 2x  (Figure 1) 
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where  is Poisson’s ratio. The goal of the present study is to give the 

conditions for the propagation of the crack depicted schematically in Figure 

1 taking account of Poisson effect. The physical quantity to be provided by 

the analysis is the crack extension force G as a function of the inclination 

angle .  

In the present study, the crack is represented by a continuous distribution of 

infinitesimal dislocations. The stress field induced by the crack in the 

surrounding medium will be given by the dislocations of the distribution. 

This method for describing the crack is well understood from the general 

work by Bilby and Eshelby [1]. We stress below that two distinct couples of 

edge dislocations (see Section 3) lead to the same value of the crack 

extension force, a value that is in full agreement with stress intensity factors 

given in the literature (Sih et al. [2]; Sih and Liebowitz [3]) in the case of an 

inclined planar crack with the same geometry as in Figure 1 but under 

tension along 1x .  

 

 
 

Figure 1 : Fracture specimen under uniform applied compression )( a , 

0a , in the 1x direction. The specimen is dashed before compression 

and solid under loading. An inclined planar crack with a straight front 

parallel to 3x  is associated to the body as well as an assumed uniform 

internal tension )( a in the 2x direction corresponding to the Poisson 

effect.  
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In Section 2, we report the stresses of the edge dislocations used in the crack 

analysis as well as the assumed stress field of Poisson effect. Section 3 

details the crack analysis. In Section 4, a discussion is made of the 

contribution of Poisson effect in the understanding of brittle fracture in 

compression.  

 
 

II - POISSON EFFECT AND DISLOCATION STRESS FIELDS  

 

In the situation of Figure 1 where the specimen is loaded in compression in 

the 1x direction, Poisson effect corresponds to a strain )(

22

P  in the 

2x direction and )(

33

P  in the 3x direction. The effect of )(

22

P corresponds 

to an opening of the crack when 0 . Poisson law reads 

 
aP

11

)(

22                                                                                 (1) 

 

where a

11  is the strain along 1x that results from the compression ( a ). 

a

a E 11)(    from Hooke’s law and E is Young’s modulus. To )(

22

P  is 

associated an internal stress )(

22

P using Hooke’s law, this leads to  

 

a

P  )(

22 .                                                                                 (2) 

 

We assume an internal uniform Poisson stress. Similarly, Poisson tension 
)(

33

P in the 3x direction reads a

P  )(

33  so that the stress tensor 

corresponding to Poisson in the basis ( 321 ,, eee


) associated with the 

directions ix  is given as  
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We shall deal with two types of edges parallel to 3x arranged on an inclined 

crack plane. The crack dislocations would then have an elevation h with 

respect to the horizontal 31xOx  plane. For a dislocation with Burgers vector 

)0,0,(b  lying indefinitely in the 3x direction and displaced by hx 2 from 

the origin, the stress field is given at ),,( 321 xxxx 


 by  
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2 )( hxxr   and )1(2/   bC  where   is the shear modulus. For 

a dislocation with Burgers vector )0,,0( b  lying along 3x  and displaced by 

hx 2  from the origin, the stress is  
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ij  is the Kronecker delta.  

 

 

III - ANALYSIS OF CRACKS  

 

The crack analysis will be performed with two different dislocation 

arrangements corresponding to Figures 2 and 3. For each arrangement we 

shall successively give the equilibrium dislocation distributions, the crack-

tip stresses and the crack extension force.  
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Figure 2 : Crack dislocations geometry corresponding to straight edges 

parallel to 3x  with 1b


 along 1x  in the crack plane and 2b


 along 2x  

perpendicular to crack. Uniform applied compression )( a acts along ,

1e


 

and internal Poisson )( a  along ,

2e


. Note that in this arrangement 1b


 and 

2b


 are not directed along the acting forces.  

 
 

Consider first the crack dislocations description given in Figure 2. The 

medium is infinitely extended with a planar crack (straight front) in the 

31xOx  plane extending from ax 1  to a and running indefinitely in the 

3x direction. We consider two families of straight edge dislocations in the 

crack. Families 1 and 2 are both parallel to 3x  with Burgers vectors 

)0,0,(1 bb 


 and )0,,0(2 bb 


 in the 1x  and 2x  directions respectively. The 

two dislocation families are assumed to be continuously distributed over the 

crack area between ax 1  to a. The system is subjected to uniform applied 

compression )( a  at infinity in the ,

1e


direction (Figure 2). The basis 

),( ,

2

,

1 ee


 is obtained from ),( 21 ee


after a rotation about 3Ox  by an angle . 

Furthermore we assume uniform Poisson tension a  in the ,

2e


 direction. 

The dislocation distribution function )( 1xDi  ( 1i  and 2 for edges 1 and 2) 

gives the number of dislocations i  in a small interval 1dx  about 1x  as 
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11)( dxxDi . We are concerned with the problem of finding the equilibrium 

distributions iD  of the dislocations under the combined action of their 

mutual repulsions and the force exerted on them by )( a  and a . We ask 

the crack faces to be traction free, this gives  
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ij  stands for the total stress at any point ),,( 321 xxx  in the medium and is 

linked to iD ; in (6), we are only concerned with the points of the crack 

faces. ij  is written as 
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where a

ij  corresponds to the applied compression, )(P

ij  to Poisson and  
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here )(n
ij (n = 1or 2) is the stress field produced by a dislocation displaced 

by hx 2  ( 0h  in the case of Figure 2) from the origin with Burgers 

vector )0,0,(b or )0,,0( b  ((4) and (5)). With respect to the system 
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 we have  
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)(n
ij  in (8) may be taken from (4) and (5) with 0h . The traction free 

boundary condition (6) then leads to the following system of integral 

equations  
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where tanp . The Cauchy principal values of the integrals are to be 

taken. The type of solution is well known [1]:  
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The corresponding relative displacement i  of the crack faces, in the 

1x ( 1i ) and 2x  ( 2i ) directions, are:  
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iD  is unbounded at ax 1  and the i  curve vertical at these end points. 

     We are now interested in stress values in the neighbourhood of the crack 

tip located at ax 1  at point P with coordinates ),0,( 321 xxx  . Substituting 

sax 1 , as 0 , ij (7) is given by the following formula: 
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with aa  . This stress expression means that only those dislocations 

located about the crack front in 1x interval ],[ aaa   will contribute 
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significantly to the stress at sax 1  ahead of the crack tip as s tends to 

zero; any other contribution will be negligible for a sufficiently small value 

of s. We observe that this formula is precise with no place for any other kind 

of additional stress term. Restricting ourselves to 12  and 22  since they are 

involved in the calculation of the crack extension force G (see in the 

following) we obtain 

 

s
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where  
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By removing  in (15), we recover the stress intensity factors displaced by 

Sih et al. [2] (see also [3]) for an inclined planar crack loaded in tension.  
 

We proceed to calculate the crack extension force following Bilby and 

Eshelby [1]. This procedure is detailed since it is also used in the analysis of 

the crack of Figure 3. Allow the right-hand tip of the crack in Figure 2 to 

advance (say rigidly for simplicity) from ax 1  to aa  , but apply forces 

to the freshly formed surfaces to prevent relative displacement; the energy 

of the system is unaltered. Now allow these forces to relax to zero so that 

the crack extends effectively from a  to aa  . The work done by these 

forces corresponds to a decrease of the energy of the system which we shall 

estimate (the energy of the system consists of the elastic energy of the 

medium and the energy of the loading mechanism). The element 13dxdxds   

of the fracture plane ahead of the crack front, at a point ),0,( 321 xxxP  , 

may be defined by dssd 


  where 


 is the unit vector perpendicular to ds  

pointing to the positive 2x direction. We obtain 31)0,1,0( dxdxsd 


. The 

relevant component of the force acting on ds  in the ix direction is jij ds  

(the summation convention on repeated subscripts applies) where ij  are 

stresses ahead of the shorter crack; thus the energy change associated 

with ds is 2/)(i
jij uds   (here a summation is also considered over i 1 and 

2) where )(iu  is the difference in displacement across the lengthened crack, 

just behind its tip, in the ix direction. When the crack advances from 
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ax 1  to aa  , the energy decrease associated with a surface element 

adx 3  is  
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Let G be a derivative of the energy of the system with respect to crack area. 

G corresponds to the limiting value taken by adxE  3/  as a  decreases to 

zero: adxEG
a
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. Stresses ij  generally consist of terms that are 

either bounded or unbounded as 1x  tends to a ; only those stress terms that 

are singular may contribute a non-zero value to G; the bounded terms all 

contribute nothing. Hence we can use (14) for 12  and 22 . )(iu may be 

obtained from the solution of (10) modified to allow for the fact that the 

crack extends from ax 1  to aa   instead of from a  to a. We may use 

(12) for )(iu following Bilby and Eshelby [1]; this leads to  
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Expression (17) gives the value of G at an arbitrary point ),0,( 320 xxaP   

along the front of the planar crack with half length a. G is defined as the 

crack extension force per unit edge length of the crack front [1].  

     Consider again the inclined planar crack problem under uniform 

compression but with a different type of crack dislocations, Figure 3. The 

main difference with Figure 2 is that the Burgers vectors of the dislocations 

are now directed along the applied compression )( a  1x direction and 

Poisson )( a 2x direction, but are not linked to the plane of the crack. 

Here a designates the projected half length l of the crack along 1x .  
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Figure 3: Crack dislocations arrangement corresponding to straight edges 

parallel to 3x  with 1b


 along 1x  out of the crack plane and 2b


 along 2x  non 

perpendicular to crack. Uniform applied compression )( a acts along 1e


 

and internal Poisson )( a  along 2e


. The projected half length of the crack 

along 1x  is a. In this geometry 1b


 and 2b


 are directed along the acting 

forces. We also have cosla   where l is the half length of the inclined 

crack. 

 

 

The traction free boundary condition at an arbitrary point 

),,( 3121 xpxxxP  , ax 1 , of the faces of the crack reads  
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Again for ij we use (7): 
a

ij  and 
)(P

ij  are obvious; for 
)(n

ij  we need to 

express 
)(n

ij  ((4) and (5)) paying attention to the fact that h in (4) and (5) is 

position dependent in the dislocation distribution. Introducing the 

expressions for ij  in (18) we obtain  

 



Rev. Ivoir. Sci. Technol., 17 (2011) 37 – 53 

 

P. N. B. ANONGBA  et  al. 

48 































0
)(

0
)(

,

1,

11

,

12

,

11

,

1

,

11

dx
xx

xD
C

xx

dxxD
Cp

a

a

a

a

a

a





   .                                                                (19) 

 

The corresponding solutions are  
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with relative displacement 

i  of the faces of the crack, in the 1x ( 1i ) and 

2x  ( 2i ) directions  
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It is seen from (20) that in absence of Poisson effect 02 
D  and in absence 

of the applied compression 01 
D . Hence dislocation family 1 responds to 

the applied compression and family 2 to Poisson.  

     Using (13) and paying attention to put 12 pxx   in )(n

ij , the stress ij  at 

a point ),,( 3121 xpxxxP   ahead of the crack front ( sax 1 , as 0 ) 

may be calculated. We only give 11 , 12  and 22  (to be used for the 

calculation of  G): 
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where  apK a

1  and  aK a

2 ; terms with 

iK  are due to 

dislocation family i ( 1i  and 2). 
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To calculate G, consider that the crack tip at ax 1  and elevation pax 2  

(see Figure 3) advances from ax 1  to aa   on the inclined crack plane. 

We have to attach to a surface element s ahead of the crack front an energy 

decrease ( E ). We take dss
aa

a



  with 31

21 dxdxpds  ; this gives 

3

21 adxps  . The unit vector 


 perpendicular to ds  is 

)0,1,(1/1 2 pp 


 so that 31)0,1,( dxdxpdssd  


. We have 


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i

ii
i

udsdsE



 )(

2211 )(
2

1
)( , the integration being performed with 

respect to 1x . Making use of (22) for ij  and (21) for )(iu  we arrive at  
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that is identical to (17); ),,( 320 xpaxaP  . The two different ways for 

describing the crack dislocations (Figures 2 and 3) lead to the same 

expression of the crack extension force. The factor )1/()( 222 pp   in 

(23) increases continuously with p from the value 2  ( 0p ) to a value 

limited by 1 (p large). It is interesting to mention from (23) that G consists 

of two separate terms, with 

iK ( 1i  and 2), associated with the dislocation 

families 1 and 2 (Figure 3) respectively.  

     The arrangement of the crack dislocations given in Figure 3 is 

convenient. Consider a fracture specimen that breaks under general loading 

along a fracture surface (this may be a non-planar surface) corresponding to 

the loading conditions. One may decompose the applied loading into a 

tension a

22 (mode I) along 2x  (use Figure 1 to illustrate), a shear a

12  (mode 

II) along 1x  and a shear a

23  (mode III) along 3x . Hence it will be possible 

to represent the crack by families i of dislocations with Burgers vectors ib


 

along ix  ( 1i , 2 and 3) responding essentially to the associated mode i (II , 

I and III respectively) ; see for example Anongba [4, 5].  
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IV - DISCUSSION AND CONCLUSION  

 

We first observe that Poisson effect plays no role during the propagation 

process when the crack is loaded in tension. Indeed, if the crack of Figure 1 

is assumed to be located in 31xOx  ( 0p ) and loaded in tension along 2x , 

Poisson effect would correspond to a lateral contraction of the medium 

parallel to 1x  and 3x ; under such conditions there is no relative 

displacement of the faces of the crack associated with these contractions. 

We conclude that Poisson effect plays no role in tension. In contrast, under 

applied compression )( a  along 1x , Figure 1, Poisson tension )( a  

along 2x  opens a crack located in 31xOx  thus improving the conditions for 

crack motion. 

Again, consider the specimen in Figure 1 with 0p . In absence of the 

Poisson effect, we obtain 0G  from (17) or (23): this result is in conflict 

with experimental observations (see below). When the fracture specimen 

breaks at a stress level c , using the condition 2G  where   is the 

surface energy, we obtain 

 

l

E
c

)1(

21
2







 .                                                                            (24) 

 

The same specimen with half length l loaded in tension along 2x  (Figure 1, 

0p ) would fracture at a stress level t  given by  

 

l

E
t

)1(

2
2





 .                                                                               (25) 

 

We arrive at  

 

tc 



1

 .                                                                                           (26) 

 

Assuming 3/1  (isotropic medium), this gives tc  3  suggesting that 3 

times larger stress is needed to fracture a specimen in compression as 

compared to tension.  

     There is a considerable amount of experimental observations showing 

cracks propagating axially along 1x  under compression. We may refer, 

among others, to the following works: Fig. 14.1 in Paul [6]; Figs. 6.9.1(a) 



Rev. Ivoir. Sci. Technol., 17 (2011) 37 – 53 

 

P. N. B. ANONGBA  et  al. 

51 

and 6.9.2(a) in Nemat-Nasser and Hori [7]; Fig. 4 in Laplanche et al. [8] and 

Fig. V-63 in Giacometti [9]. These cracks display the following features 

(refer to Figure 1 with 0 for the ix directions):  

 Crack propagation occurs in absence of plasticity. 

 The crack length may be of the order of ½ mm and even larger. 

 Larger cracks are more opened. In other words, there is a gradual 

opening of the faces of the crack during crack extension. The 

opening occurs in the 2x direction perpendicular to the crack 31xOx  

plane.  

It appears necessary to assume a tension in the 2x direction to be able to 

explain axial propagation of the crack along 1x  under compression. The 

present study gives the contribution of the Poisson effect to the conditions 

for crack propagation under compression in the case of an isotropic 

homogeneous elastic body.  
 

It is interesting to discuss Poisson effect in connection with experimental 

measurements of the stress to fracture in compression. In most available 

works (see, for example, [10 to 13]), specimens contain a starter crack in the 

form of a slit oriented at an acute angle 0 with respect to the 

1x direction of compression as illustrated in Figure 1. Unfortunately 

fracture of the specimen under load does not correspond to an extension of 

the starter crack in its initial inclination direction, a necessary condition for 

result (23) to apply. In contrast, a new crack initiates from the tip of the slit 

and propagates in a completely different direction so as to become gradually 

parallel to the 1x axis of compression. Under such conditions it appears 

necessary that the starter crack be parallel to the 1x axis ( 0 ), a 

situation that is uncommonly reported. 
 

In the experiments by Ashby and Hallam [13] in PMMA plates, the smallest 

reported slit inclination angle is 15 . This is because as   decreases to 

zero, the stress to fracture the specimen increases and falls in a range 

corresponding to crack propagation in presence of plasticity. Ashby and 

Hallam [13] quoted with insistence that PMMA is not an ideally brittle solid 

and displayed accordingly the associated stress-strain curve (their Fig. 10). 

The conditions we shall take from their work (see Fig. 4 in [13]) correspond 

to lowest fracture stress levels (we seek linear-elastic deformation): 

15 in our notation; 8l mm starter crack half length; c (stress to 

fracture) given by them in the form of a ratio 5.6/  ICc KlR   with 

0.1ICK  MPa m
1/2

; ICK is the fracture toughness of the PMMA for slow 

crack growth taken from [14]. Introducing Poisson effect using (23) with 
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0p approximately, lc   is the appropriate quantity to be compared 

with ICK , this gives a ratio 5.2/)(  ICc

P KlR   ( 38.0 , PMMA). 

We would expect 1)( PR if Poisson effect operates exclusively in the crack 

propagation process along 1x . The observed discrepancy may have different 

possible origins. First the starter crack is 15  inclined from the 

compression 1x axis and should actually be perfectly aligned along 1x . We 

may also invoke the facts that the slit is not perfectly sharp or a localized 

plasticity exists at the tip of the crack. We should equally be aware that 

Poisson 2x extension may be inhibited in appreciable parts of the fracture 

specimen adjacent to the grips. Ashby and Hallam [13] noted that the 

behaviour of the growing crack is extremely sensitive to the condition of the 

ends of the sample. In summary, under uniform applied compression )( a  

along 1x  (Figure 1), an axial 1x propagation of a planar straight edge 

crack in 31xOx requires a non-zero relative displacement of the faces of the 

crack in the 2x direction. This may be provided by Poisson effect and 

requires )/1(   times larger stress when compared with tensile fracture 

experiments. 
 

When a pre-existing crack in the form of a slit inclined by an angle 0  is 

loaded in compression in the geometry of Figure 1, as mentioned above, 

further extension of the flaw does not occur in the initial inclination 

direction. What occurs is the nucleation of a new crack from the tip of the 

slit that deviates appreciably from the initial inclination direction (refer to 

[15]). The new crack gradually extends in a stable manner with increasing 

axial compression, curving toward an orientation parallel to the compression 

1x direction. Several theoretical and experimental analyses have been 

undertaken to understand this complex process (see among others [12, 13, 

16, 17]). This is not the aim of the present study to give a detailed account 

of the implications of Poisson effect into these theories. What is obvious is 

that when some 2x tension of the order of Poisson is introduced into the 

displayed results, then the crack growth becomes unstable after a short 

extension of the newly created crack, leading to 1x axial splitting (see: Fig. 

16 and 18 in [13]; Fig. 4 in [17]). In contrast, in absence of a tension along 

2x  the new crack grows to a finite length and then stops inside the medium: 

this reveals the importance of 2x tension (independent of crack 

morphology) in the complete splitting process. Agreement is achieved 

between theory and experiment as indicated by Ashby and Hallam [13] (see 

the ir Fig. 18).  
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In conclusion, Poisson effect is potentially able to account for the splitting 

(parallel to the compression direction) of fracture specimens observed in 

real materials. 

Acknowledgements 

Region Poitou-Charentes is gratefully acknowledged for providing a 

research fellowship to one of us (PNBA).  

 

 
 

REFERENCES 

 

 [1]- B.A. BILBY and J.D. ESHELBY, In: ‟Fracture”, Ed. Academic 

Press (H. Liebowitz), New York, Vol 1 (1968) 99 - 182 

 [2]-  G.C. SIH, P.C. PARIS and F. ERDOGAN, J. Appl. Mech., 29 (1962)  

       306- 312  

 [3]-  G.C. SIH and H. LIEBOWITZ, In: ‟Fracture”, Ed. Academic Press 

(H. Liebowitz), New York, Vol 2 (1968) 67 - 190 

 [4] - P.N.B. ANONGBA, Rev. Ivoir. Sci. Technol., 14 (2009) 55 - 86 

 [5] -  P.N.B. ANONGBA, Rev. Ivoir. Sci. Technol., 16 (2010) 11 - 50 

 [6] -  B. PAUL, In: ‟Fracture”, Ed. Academic Press (H. Liebowitz), New 

York,        Vol 2 (1968) 313 - 496 

 [7] -  S. NEMAT-NASSER and M. HORI, “Micromechanics: overall 

properties        of heterogeneous materials”, 2nd ed. Elsevier (1999)  

 [8] -  G. LAPLANCHE, A. JOULAIN, J. BONNEVILLE, R. SCHALLER 

and   T. EL KABIR, J. Alloys Compd., 493 (2010) 453- 460  

 [9] -  E. GIACOMETTI, PhD Thesis EPFL, Lausanne (1999)  

[10]-  W.F. BRACE and E.G. BOMBOLAKIS, J. Geophys. Res., 68 (1963)  

       3709- 3713  

[11]-  E. HOEK and Z.T. BIENIAWSKI, Int. J. Fract. Mech., 1 (1965) 137- 155  

[12]-  H. HORII and S. NEMAT-NASSER, J. Geophys. Res., 90 (1985) 

3105- 3125 

[13]-  M.F. ASHBY and S.D. HALLAM, Acta Metall., 34 (1986) 497- 510  

[14]- G.P. MARSHALL and J.G. WILLIAMS, J. Mater. Sci., 8 (1973) 138- 140 

[15]-  E.G. BOMBOLAKIS, In: “Proc. Internat. Conf. on Dynamic Crack

 Propagation”, Ed. Noordhoff International Publishing (G.C. Sih),  

         Leyden, 1973, 103- 112  

[16]-  S. NEMAT-NASSER and H. HORII, J. Geophys. Res., 87 (1982) 

6805- 6821 

[17]-  H. HORII and S. NEMAT-NASSER, Phil. Trans. R. Soc. Lond. A, 

319 (1986) 337- 374  

 


