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ABSTRACT

An estimate is made of the contribution of Poisson effect to the conditions
for the propagation of a planar crack subjected to uniform compression in
the framework of linear isotropic elasticity. When comparison is made with
tension, (1/v)times larger stress is required to break a fracture specimen in

compression (vis Poisson’s ratio). The treatment considers an inclined
planar crack with respect to the applied compression direction and provides
an expression of the crack extension force G per unit length of the crack
front as a function of the inclination slope p of the crack. A representation of
the crack by a continuous distribution of edge dislocations with infinitesimal
Burgers vectors is adopted. It is shown that the inclined crack can be
described by two distinct dislocation families responding to the applied
compression and the induced internal Poisson tension, respectively.

Keywords : continuum mechanics, crack propagation, dislocations, Poisson
effect, fracture mechanisms.

RESUME
Fissures fragiles sous compression : introduction de Deffet
Poisson

Une estimation est faite de la contribution de 1’effet Poisson aux conditions
de propagation d’une fissure plane soumise & une compression uniforme
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dans le cadre de I’¢lasticité linéaire. En termes de contrainte et lorsqu’une
comparaison est faite avec la tension, il est (1/v) fois plus difficile de casser

une éprouvette d’essai en compression (vest le rapport de Poisson).
L’analyse considére une fissure inclinée par rapport a la direction de la
compression et donne une expression de la force d’extension G de la fissure
par unité de longueur du front de fissure en fonction de la pente
d’inclinaison p. La représentation d’une fissure par une distribution continue
de dislocations avec des vecteurs de Burgers infinitésimaux est adoptée. Il
est montré que la fissure inclinée peut étre décrite par deux familles
distinctes de dislocation obéissant a la compression appliquee et a la tension
de Poisson induite, respectivement.

Mots-clés : mécanique des milieux continus, propagation de fissure,
dislocations, effet Poisson, mécanismes de rupture.

I - INTRODUCTION

Consider as an illustration in Figure 1 a rectangular fracture specimen with
large dimensions, isotropic and elastic. Initially the specimen is dashed.
With respect to a Cartesian coordinate system x, and under the action of
uniform compressive stress (—o,) along the x, —direction, the specimen
shrinks in the x, —direction but extends according to Poisson in the x, and
X, directions; the shape then taken by the specimen is in solid (Figure 1).
To the specimen is attached a planar crack with finite dimensions along x;
and x, but infinite in the calculations (below) in the x, —direction. The
crack is symmetrical with respect to Ox,, inclined by an angle 6 with
respect to Oxx, and has a straight front along x,. When the crack is in
Oxx; (@=0), considering the applied compression (—o,) only, we show
in the following that the crack extension force G per unit length of the crack
front is zero. However this result is in conflict with numerous experimental
observations revealing that the crack is able to propagate axially along x;.
We shall come back to the experimental evidences in Section 4. At this
point, we only stress that in addition to an extension alongx,, there is an
opening of the crack along x,. Things happen as if the crack was subjected
to a tension in the x, —direction. A possible origin of an induced tension is
the well-known Poisson effect which, in the framework of linear elasticity
obeying Hooke’s law, leads to a stress (vo, ) directed along x, (Figure 1)
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where vis Poisson’s ratio. The goal of the present study is to give the
conditions for the propagation of the crack depicted schematically in Figure
1 taking account of Poisson effect. The physical quantity to be provided by
the analysis is the crack extension force G as a function of the inclination
angleé.

In the present study, the crack is represented by a continuous distribution of
infinitesimal dislocations. The stress field induced by the crack in the
surrounding medium will be given by the dislocations of the distribution.
This method for describing the crack is well understood from the general
work by Bilby and Eshelby [1]. We stress below that two distinct couples of
edge dislocations (see Section 3) lead to the same value of the crack
extension force, a value that is in full agreement with stress intensity factors
given in the literature (Sih et al. [2]; Sih and Liebowitz [3]) in the case of an
inclined planar crack with the same geometry as in Figure 1 but under
tension along X;.
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Figure 1 : Fracture specimen under uniform applied compression (-o,),
o, >0, in the x —direction. The specimen is dashed before compression

and solid under loading. An inclined planar crack with a straight front
parallel to x, is associated to the body as well as an assumed uniform

internal tension (vo,)in the x, —direction corresponding to the Poisson
effect.
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In Section 2, we report the stresses of the edge dislocations used in the crack
analysis as well as the assumed stress field of Poisson effect. Section 3
details the crack analysis. In Section 4, a discussion is made of the
contribution of Poisson effect in the understanding of brittle fracture in
compression.

Il - POISSON EFFECT AND DISLOCATION STRESS FIELDS

In the situation of Figure 1 where the specimen is loaded in compression in
the x, —direction, Poisson effect corresponds to a strain &5 in the

x, —direction and &{7’ in the x, —direction. The effect of &{}’ corresponds
to an opening of the crack when @ =0 . Poisson law reads

£ =—Véh (1)

where &/ is the strain along x that results from the compression (-o,).
(—o,) =Eg&l, from Hooke’s law and E is Young’s modulus. To &} is

associated an internal stress {5’ using Hooke’s law, this leads to
P
oY =vao,. )

We assume an internal uniform Poisson stress. Similarly, Poisson tension
olPin the x,—direction reads ol =vo, so that the stress tensor

corresponding to Poisson in the basis (€,€,,€) associated with the
directions x. is given as

0 0
(G(P))— 0 vo, 0 |. (3)
0 vo

We shall deal with two types of edges parallel to x,arranged on an inclined

crack plane. The crack dislocations would then have an elevation h with
respect to the horizontal Ox x, plane. For a dislocation with Burgers vector

(b,0,0) lying indefinitely in the x; —direction and displaced by x, =h from
the origin, the stress field is given at X =(x;,X,,X3) by
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0-1%) (X) C Xl( S(z )2), o.1(1)( ) =_C (Xz — h)(3XJ:4+ (Xz — h)z),
(1)(X) C( h)( ( _h)z) (1) (X) —_2Cv ( Zr; h) ,

22 1
|,4

ol =05 =0; 4)

r? =x2+(x, —h)? and C = b/27(1-v) where u is the shear modulus. For
a dislocation with Burgers vector (0,b,0) lying along X, and displaced by
X, =h from the origin, the stress is

Gfg)(i) -C (Xz — h)(xlz - (Xz — h)z) :

r4
(2)(X) cXL ( (é‘ll+é‘|2)+(xr2_ h) ( 5|1+35 ) +2V5i3J1 i:]., Zand 3’
cP(X)=0, j=1and2; (5)

g Is the Kronecker delta.

111 - ANALYSIS OF CRACKS

The crack analysis will be performed with two different dislocation
arrangements corresponding to Figures 2 and 3. For each arrangement we
shall successively give the equilibrium dislocation distributions, the crack-
tip stresses and the crack extension force.
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Figure 2 : Crack dislocations geometry corresponding to straight edges
parallel to x, with b, along x_in the crack plane and b, along x,

perpendicular to crack. Uniform applied compression (—o,) acts along €
and internal Poisson (vo,) along &,. Note that in this arrangement 51 and

b, are not directed along the acting forces.

Consider first the crack dislocations description given in Figure 2. The
medium is infinitely extended with a planar crack (straight front) in the
Oxx, plane extending from x, =—a to a and running indefinitely in the

X, —direction. We consider two families of straight edge dislocations in the
crack. Families 1 and 2 are both parallel to x, with Burgers vectors
b, =(b,0,0) and b, =(0,b,0) in the x_ and x, directions respectively. The

two dislocation families are assumed to be continuously distributed over the
crack area between x, =—a to a. The system is subjected to uniform applied

compression (—o,) at infinity in the € direction (Figure 2). The basis
(€,€,) is obtained from (€ ,€,) after a rotation about Ox, by an angleéd.

Furthermore we assume uniform Poisson tension vo, in the €, direction.
The dislocation distribution function D;(x) (i=1 and 2 for edges 1 and 2)
gives the number of dislocations i in a small interval dx, about X, as
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D; (% )dx . We are concerned with the problem of finding the equilibrium
distributions D, of the dislocations under the combined action of their
mutual repulsions and the force exerted on them by (-o,) and vo, . We ask
the crack faces to be traction free, this gives

0,=0
Gy =0. (6)
Ty =0

o; stands for the total stress at any point (x;,x,,x3) in the medium and is

linked to D;; in (6), we are only concerned with the points of the crack
faces. o is written as

(P) 4 =)

o, =0, +0;’ +0 +a(2) (7

where o corresponds to the applied compression, a(P) to Poisson and
Gy (%, X, %) = I o (X~ %, %, %)D,(x)dx, (n=1land2);  (8)

here aﬁ”) (n = lor 2) is the stress field produced by a dislocation displaced

by x,=h (h=0 in the case of Figure 2) from the origin with Burgers
vector (b,0,0)or (0,b,0) ((4) and (5)). With respect to the system
(O,€ ,€,,8,) we have

cos’6 sin20/2 0
(6%)=(-0,)| sin2012 sin@ 0],

0 0 0
sin?0  —sin26/2 0
(c®)=vo,| -sin20/2  cos’0  0; )
0 0 1
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a“”) in (8) may be taken from (4) and (5) with h=0. The traction free

boundary condition (6) then leads to the following system of integral
equations

(o )(1+v) p I D.(x)dx; _

p2 p anl():l)Xl (10)
(—aa)[l+IO j+cj o dx; =0

where p=tané. The Cauchy principal values of the integrals are to be
taken. The type of solution is well known [1]:

D)= AP e) %

:|.+p2 aC \/a_
0,0 2 | prod (v

The corresponding relative displacement ¢4 of the crack faces, in the
x,(1=1)and x, (i=2) directions, are:

_@+v)p, 2 ,2\1/2
hx) =" o? (-o.b/zC)(@” —x)"",

2

_ZVJ(—Uab/ﬂC)(a — X2, (12)
+P

_(P
¢2(X1)—(1

D; is unbounded at x; =+a and the ¢ curve vertical at these end points.
We are now interested in stress values in the neighbourhood of the crack
tip located at x; =a at point P with coordinates (x;, X, =0, X;). Substituting

x =a+s, 0<s<<a, oy (7) is given by the following formula:

5;(s) = z j o (@+s—X, %, =0,%)D, (x)dx, (13)

n=la-d

withd&a<<a. This stress expression means that only those dislocations
located about the crack front in x, —interval [a—da , a] will contribute
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significantly to the stress at x, =a+s ahead of the crack tip as s tends to
zero; any other contribution will be negligible for a sufficiently small value
of s. We observe that this formula is precise with no place for any other kind
of additional stress term. Restricting ourselves to &,, and &,, since they are
involved in the calculation of the crack extension force G (see in the
following) we obtain

— o Ky K1
Glz@)‘m\/g’ 522(3) \/ﬁ\/g (14)
where
=8P o yar, k=P Y (o)ar. (15)
1+p 1+p

By removing v in (15), we recover the stress intensity factors displaced by
Sih et al. [2] (see also [3]) for an inclined planar crack loaded in tension.

We proceed to calculate the crack extension force following Bilby and
Eshelby [1]. This procedure is detailed since it is also used in the analysis of
the crack of Figure 3. Allow the right-hand tip of the crack in Figure 2 to
advance (say rigidly for simplicity) from x, =a to a+d&, but apply forces

to the freshly formed surfaces to prevent relative displacement; the energy
of the system is unaltered. Now allow these forces to relax to zero so that
the crack extends effectively from a to a+d&. The work done by these
forces corresponds to a decrease of the energy of the system which we shall
estimate (the energy of the system consists of the elastic energy of the

medium and the energy of the loading mechanism). The element ds = dx,dx,
of the fracture plane ahead of the crack front, at a pointP =(x,, X, =0,X%;),
may be defined by ds = ds where 7 is the unit vector perpendicular to ds
pointing to the positive x, —direction. We obtain dS = (0,1,0)dx,dx,. The
relevant component of the force acting on ds in the x; —direction is oj;ds;
(the summation convention on repeated subscripts applies) where o are
stresses ahead of the shorter crack; thus the energy change associated
withdsis &;;ds;au® /2 (here a summation is also considered over i=1 and

2) where Au® is the difference in displacement across the lengthened crack,
just behind its tip, in the x; —direction. When the crack advances from
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x,=a to a+da, the energy decrease associated with a surface element
dx,da is

1 a+da 1 a+da
—~E = dx{E j&leu(l’dxl s j EzzAu(z)dle : (16)

Let G be a derivative of the energy of the system with respect to crack area.
G corresponds to the limiting value taken by —JE/dx,sa as sa decreases to

zero: G :gmo—éE/ dx,0a. Stresses oy generally consist of terms that are
either bounded or unbounded as x; tends to a; only those stress terms that
are singular may contribute a non-zero value to G; the bounded terms all
contribute nothing. Hence we can use (14) for &,, and &,,. Au"may be

obtained from the solution of (10) modified to allow for the fact that the
crack extends from x, =—a to a+da instead of from —a to a. We may use

(12) for Au®following Bilby and Eshelby [1]; this leads to
G(R) = (KZ+KZ)J1-v?)/E

:[VZ - szaﬂo-;(l—vz)/E. (17)

1+ p?

Expression (17) gives the value of G at an arbitrary point R,(a,X, =0,X;)

along the front of the planar crack with half length a. G is defined as the
crack extension force per unit edge length of the crack front [1].

Consider again the inclined planar crack problem under uniform
compression but with a different type of crack dislocations, Figure 3. The
main difference with Figure 2 is that the Burgers vectors of the dislocations
are now directed along the applied compression (-o,) x, —direction and

Poisson (vao,) X, —direction, but are not linked to the plane of the crack.
Here a designates the projected half length | of the crack along x; .
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Figure 3: Crack dislocations arrangement corresponding to straight edges
parallel to x, with b, along x, out of the crack plane and b, along x, non
perpendicular to crack. Uniform applied compression (—o,) acts along &
and internal Poisson (vo,) along €, . The projected half length of the crack

along x_is a. In this geometry b, and b, are directed along the acting

forces. We also have a=I1cosé@ where | is the half length of the inclined
crack.

The traction free boundary condition at an arbitrary point
P =(X,X, = PX, %), |x|<a, of the faces of the crack reads

Oy — pa—llzo
Oy — p512=0. (18)
O3~ p513=0

Again for &;we use (7): of and o) are obvious; for 5" we need to

i
express ai(j”) ((4) and (5)) paying attention to the fact that h in (4) and (5) is
position dependent in the dislocation distribution. Introducing the
expressions for &;; in (18) we obtain
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D, (x)dx _
X =X

a
D
vaa+Cj 2
S X

po, +C | 0
- (19)

(%) dx; =0

The corresponding solutions are

D:(xl)z%a%xf,

oy VO, X
D, (%)= < az——xf (20)
with relative displacement ¢~ of the faces of the crack, in the x, (i =1) and
X, (1 =2) directions

4 (x) =(po,b/2C)(@* — x)"'?
#, (%) = (I/O'ablyzC)(a2 _ X12)1/2 _ o

It is seen from (20) that in absence of Poisson effect D, =0 and in absence
of the applied compression D, = 0. Hence dislocation family 1 responds to
the applied compression and family 2 to Poisson.

Using (13) and paying attention to put x, = px, in o{”, the stress & at
a point P =(x;, x, = px,, X;) ahead of the crack front (x; =a+s,0<s<<a)
may be calculated. We only gives,,, o;, and &,, (to be used for the

calculation of G):

- __ 1 N VA

e g PO PR

_1-p® (. a1

%y P

— _ _ 2 * 2 * l

T =y pry7 P~ PIKI + 03P ) = e (22)

where K| =po,var and K;=vo,Jar; terms with K  are due to
dislocation family i (i =1 and 2).
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To calculate G, consider that the crack tip at x, =a and elevation x, = pa
(see Figure 3) advances from x, =a to a+da on the inclined crack plane.

We have to attach to a surface element Asahead of the crack front an energy
a+da

decrease (—cE). We take As= [ ds with ds=+/1+ p?dxdx,; this gives

a

As =1+ p*sadx,. The wunit vector 7 perpendicular to ds is
7 =11+ p*(-pL0) so that dS=jds=(-pL0)dxdx,. We have
a+oa
(—6E)=% j;(aldsl+azdsz)Au(", the integration being performed with
respect to x,. Making use of (22) for & and (21) for Au® we arrive at
G(%)=2T0—5E/AS
1

1+ p?

- [VZ hl gz Jlﬂof(l—vz)/ E (23)

(77 + kv ) E

1+p

that is identical to (17); R, =(a,x, = pa,x;). The two different ways for
describing the crack dislocations (Figures 2 and 3) lead to the same
expression of the crack extension force. The factor (v*+ p?)/(1+ p°®) in

(23) increases continuously with p from the value v> (p=0) to a value
limited by 1 (p large). It is interesting to mention from (23) that G consists
of two separate terms, with K. (i =1 and 2), associated with the dislocation
families 1 and 2 (Figure 3) respectively.

The arrangement of the crack dislocations given in Figure 3 is
convenient. Consider a fracture specimen that breaks under general loading
along a fracture surface (this may be a non-planar surface) corresponding to
the loading conditions. One may decompose the applied loading into a

tension o7, (mode 1) along x, (use Figure 1 to illustrate), a shear o7, (mode
I1) along x, and a shear o,, (mode IIl) along x,. Hence it will be possible

to represent the crack by families i of dislocations with Burgers vectors b,

along x, (i=1, 2 and 3) responding essentially to the associated mode i (II ,
I and 111 respectively) ; see for example Anongba [4, 5].
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IV - DISCUSSION AND CONCLUSION

We first observe that Poisson effect plays no role during the propagation
process when the crack is loaded in tension. Indeed, if the crack of Figure 1

is assumed to be located in Oxx, (p=0) and loaded in tension along x,,

Poisson effect would correspond to a lateral contraction of the medium
parallel to x, and x,; under such conditions there is no relative

displacement of the faces of the crack associated with these contractions.
We conclude that Poisson effect plays no role in tension. In contrast, under

applied compression (—o,) along x, Figure 1, Poisson tension (vo,)
along x, opens a crack located in Oxx, thus improving the conditions for

crack motion.
Again, consider the specimen in Figure 1 with p=0. In absence of the

Poisson effect, we obtain G =0 from (17) or (23): this result is in conflict
with experimental observations (see below). When the fracture specimen
breaks at a stress level o, using the condition G =2y where y is the

surface energy, we obtain

v\ z@l-v)I

The same specimen with half length | loaded in tension along x, (Figure 1,
p =0) would fracture at a stress level o, given by

[ 2E
TNz (25)

We arrive at
o, = iO't : (26)
1%

Assuming v =1/3 (isotropic medium), this gives o, = 3o, suggesting that 3
times larger stress is needed to fracture a specimen in compression as
compared to tension.

There is a considerable amount of experimental observations showing
cracks propagating axially along X, under compression. We may refer,
among others, to the following works: Fig. 14.1 in Paul [6]; Figs. 6.9.1(a)
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and 6.9.2(a) in Nemat-Nasser and Hori [7]; Fig. 4 in Laplanche et al. [8] and
Fig. V-63 in Giacometti [9]. These cracks display the following features
(refer to Figure 1 with @ =0 for the x, —directions):

e Crack propagation occurs in absence of plasticity.

e The crack length may be of the order of %2 mm and even larger.

e Larger cracks are more opened. In other words, there is a gradual
opening of the faces of the crack during crack extension. The
opening occurs in the x, —direction perpendicular to the crack Ox X,

plane.
It appears necessary to assume a tension in the x, —direction to be able to
explain axial propagation of the crack along x, under compression. The
present study gives the contribution of the Poisson effect to the conditions

for crack propagation under compression in the case of an isotropic
homogeneous elastic body.

It is interesting to discuss Poisson effect in connection with experimental
measurements of the stress to fracture in compression. In most available
works (see, for example, [10 to 13]), specimens contain a starter crack in the
form of a slit oriented at an acute angle @& =O0with respect to the
X, —direction of compression as illustrated in Figure 1. Unfortunately
fracture of the specimen under load does not correspond to an extension of
the starter crack in its initial inclination direction, a necessary condition for
result (23) to apply. In contrast, a new crack initiates from the tip of the slit
and propagates in a completely different direction so as to become gradually
parallel to the x, —axis of compression. Under such conditions it appears

necessary that the starter crack be parallel to the x, —axis (6=0), a
situation that is uncommonly reported.

In the experiments by Ashby and Hallam [13] in PMMA plates, the smallest
reported slit inclination angle is @ =15°. This is because as @ decreases to
zero, the stress to fracture the specimen increases and falls in a range
corresponding to crack propagation in presence of plasticity. Ashby and
Hallam [13] quoted with insistence that PMMA is not an ideally brittle solid
and displayed accordingly the associated stress-strain curve (their Fig. 10).
The conditions we shall take from their work (see Fig. 4 in [13]) correspond
to lowest fracture stress levels (we seek linear-elastic deformation):
€ =15°in our notation; | =8mm starter crack half length; o (stress to

fracture) given by them in the form of a ratio R =O'CH/K|C =6.5 with
K =1.0 MPa m“% K, is the fracture toughness of the PMMA for slow
crack growth taken from [14]. Introducing Poisson effect using (23) with
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p = 0 approximately, voC\/H is the appropriate quantity to be compared
withK . , this gives a ratio R® =vo,Jal /K =25 (v=0.38, PMMA).

We would expect R =1if Poisson effect operates exclusively in the crack
propagation process along x, . The observed discrepancy may have different
possible origins. First the starter crack is 6=15° inclined from the
compression x, —axis and should actually be perfectly aligned along x,. We
may also invoke the facts that the slit is not perfectly sharp or a localized
plasticity exists at the tip of the crack. We should equally be aware that
Poisson x, —extension may be inhibited in appreciable parts of the fracture
specimen adjacent to the grips. Ashby and Hallam [13] noted that the
behaviour of the growing crack is extremely sensitive to the condition of the
ends of the sample. In summary, under uniform applied compression (-o,)

along x, (Figure 1), an axial x, —propagation of a planar straight edge
crack in Ox x,requires a non-zero relative displacement of the faces of the

crack in the x, —direction. This may be provided by Poisson effect and
requires (1/v) times larger stress when compared with tensile fracture
experiments.

When a pre-existing crack in the form of a slit inclined by an angle 8 =0 is
loaded in compression in the geometry of Figure 1, as mentioned above,
further extension of the flaw does not occur in the initial inclination
direction. What occurs is the nucleation of a new crack from the tip of the
slit that deviates appreciably from the initial inclination direction (refer to
[15]). The new crack gradually extends in a stable manner with increasing
axial compression, curving toward an orientation parallel to the compression
X, —direction. Several theoretical and experimental analyses have been
undertaken to understand this complex process (see among others [12, 13,
16, 17]). This is not the aim of the present study to give a detailed account
of the implications of Poisson effect into these theories. What is obvious is
that when some x, —tension of the order of Poisson is introduced into the
displayed results, then the crack growth becomes unstable after a short
extension of the newly created crack, leading to x, —axial splitting (see: Fig.
16 and 18 in [13]; Fig. 4 in [17]). In contrast, in absence of a tension along
X, the new crack grows to a finite length and then stops inside the medium:

this reveals the importance of x,—tension (independent of crack

morphology) in the complete splitting process. Agreement is achieved
between theory and experiment as indicated by Ashby and Hallam [13] (see
the ir Fig. 18).
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In conclusion, Poisson effect is potentially able to account for the splitting
(parallel to the compression direction) of fracture specimens observed in
real materials.
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