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RÉSUMÉ 
 
La non-linéarité de la relation pluie-débit complique souvent la tâche des 
hydrologues dans leur souci de modéliser les débits à l’exutoire d’un cours 
d’eau. Dans le cas du Bandama Blanc, objet de cette étude, cette non-linéarité 
est accentuée par la présence de plusieurs barrages à vocation agro-pastorale. 
Aussi, l’identification de tous les processus intervenant sur un bassin versant 
et leur intégration dans un processus de modélisation abouti à des modèles 
complexes employant un nombre élevé de paramètres. Le recours à des 
modèles à faibles nombre de variables, capables de traiter la non-linéarité est 
donc indispensable. Pour résoudre cette non-linéarité, s’inspirant des travaux 
de McCulloch et Pitts [1], plusieurs hydrologues ont déjà travaillé sur des 
architectures de réseaux de neurones avec de bons résultats. Mais, ces 
modèles globaux de l’intelligence artificielle ont été généralement 
développés sous des climats plus ou moins tempérés.  
 

Dans l’optique de vérifier la performance de ces modèles sur les rivières en 
milieu tropical humide, il a été optimisé et comparé, dans ce travail, deux 
séries d’architectures (une première série avec la pluie en entrée (modèles 
n°1 et n°3) et une seconde avec la pluie et l’ETP en entrée (modèles n°2 et 
n°4). Ces modèles neuronaux ont été comparés avec un autre modèle global, 
le modèle GR2M, sur le Bandama blanc à Bada et à Tortiya. Les modèles 
neuronaux ont été optimisés avec l’algorithme de Levenberg Marquarld (LM) 
en associant l’arrêt précoce, tandis que le modèle GR2M a été optimisé avec 
la méthode pas à pas. Le critère de Nash (%) et le coefficient de corrélation 
de Pearson (R) ont permis d’apprécier les performances de ces modèles. Pour 
les modèles neuronaux et le modèle GR2M, les coefficients de corrélation de 
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Pearson (R) sont supérieurs à 0,80 à toutes les stations. En ce qui concerne le 
critère de Nash, il est généralement supérieur à 60% pour les différentes 
architectures de modèles (Réseaux de neurones et GR2M) à Bada et à 
Tortiya. Cependant, les modèles neuronaux apparaissent plus performants 
que le modèle GR2M à toutes les stations. Le modèle neuronal avec 
seulement la pluie en entrée est plus performant que le modèle GR2M avec la 
pluie et l’ETP en entrée à toutes les stations d’étude. Aussi, les 
hydrogrammes observés et calculés sont très bien synchrones. On peut donc 
conclure que les réseaux de neurones sont aussi applicables, avec de bonnes 
performances, en région tropicale humide. 
 
Mots-clés :  simulation, apprentissage supervisé, arrêt précoce, validation,  
                     algorithme de Levenberg Marquardt. 
 
 
ABSTRACT  

Modeling of rivers flow in tropical humid area : application of 
neural networks and the model gr2m to the Bandama Blanc River   
(Côte d’Ivoire) 
 

The non-linearity of the rainfall runoff relationship often complicates the 
studies of hydrologists in their effort to model the flow of a river. In the case 
of the Bandama Blanc purpose of this study, this non-linearity is accentuated 
by the presence of several agro-pastoral dams. Also, the identification of all 
the processes involved in the watershed and their integration into a modeling 
process resulted in complex models using a large number of parameters. The 
use of models with low number of variables, capable of handling non-
linearity is essential. To solve this non-linearity, drawing on the work of 
McCulloch and Pitts [1], many hydrologists have been working on 
architectures of neural networks with good results. But these global models 
of artificial intelligence have generally been developed under temperate 
climates more or less.  
 

In order to verify the model performance on the rivers in the humid tropics, it 
has been optimized and compared in this work, two sets of architectures (first 
series with the rain input (models n°1 and n°3) and one with rain and ETP 
input (models n°2 and n° 4). These neural models were compared with 
another global model, the model GR2M. The neural models were optimized 
with the Levenberg Marquarld (LM) with early stopping, while the model 
GR2M was optimized with method “step by step”. The Nash criterion (%) 
and Pearson correlation coefficient (R) were used to assess the performance 
of these models. For the neural models and model GR2M, the Pearson 
correlation coefficients (R) are higher than 0.80 at all stations. Nash criterion, 
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it is generally above 60% for different architectures models (Neural 
Networks and GR2M) to Bada and Tortiya. However, the neural models 
appear more efficient than the model GR2M at all stations. The neuronal 
model with only the rain input is more efficient than the model GR2M with 
rain and ETP input. Also, the observed and computed hydrographs are well 
synchronous for all models. We can therefore conclude that neural networks 
are also applicable, with good performance in humid tropical region. 

 
Keywords :  simulation, supervised learning, early stopping, validation,  
                      Levenberg Marquardt algorithm. 
 
 
I - INTRODUCTION 
 
Les précipitations constituent généralement les plus grands apports du bilan 
hydrologique d’un bassin versant. Elles sont constituées par les bruines, les 
verglas, les givres, les neiges, les grêles, les grésils et les plus pluies. Mais, en 
Afrique en général et particulièrement en Côte d’Ivoire, c’est la pluie 
uniquement qui alimente les nappes et les différents cours d’eau. La 
transformation de la pluie (P) en débit (Q) des rivières et des fleuves est un 
phénomène de grande importance qui, depuis plusieurs années, fait l’objet de 
nombreuses études. La communauté scientifique dans son ensemble, afin de 
faire face aux problèmes d’inondation et de sècheresse et aussi de dompter 
l’eau pour les multiples besoins de l’Homme (alimentation, agriculture, 
élevage, etc.), utilise différents modèles (modèles distribués, modèles 
globaux, etc.) pour la compréhension de la relation pluie-débit qui est dans la 
plus part des cas non-linéaire.  
 

Dans le cas du Bandama Blanc, objet de cette étude, cette non-linéarité est 
accentuée par la présence de plusieurs barrages à vocation agro-pastorale 
dans la partie Nord de la zone d’étude. Beaucoup de méthodes statistiques 
conventionnelles de modélisation sont basées sur des modèles linéaires 
(Modèle ARIMA, modèle AR, etc.), alors que le succès de ceux-ci est limité 
par leur linéarité. Pour pallier à cette non-linéarité et construire des modèles 
qui se rapprochent plus de la réalité et moins exigent en variables d’entrée, 
plusieurs modèles sont essayés dont les réseaux de neurones. Les travaux de 
plusieurs auteurs dans ce domaine montrent que ces modèles, inspirés du 
fonctionnement des neurones biologiques, sont très performants pour la 
simulation et la prévision des débits sur les bassins versants. Plusieurs études 
menées en Amérique : Wenri et al [2], en Europe : Johannet et al [3] et Ayral 
[4] et en Algérie : Dechemi et al [5] et Tarik [6] confirment les meilleurs 
résultats de simulation et de prévision avec les réseaux de neurones. 
Malheureusement, on ignore actuellement si ces modèles neuronaux sont 
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performants pour la modélisation du binôme pluie-débit en régime tropical 
humide en général et particulièrement sur le Bandama Blanc où le régime des 
eaux, voire la relation pluie-débit, est perturbé par la présence de multiple 
barrages agropastoraux. La question est donc de savoir si les modèles 
neuronaux, dont il est question ici, peuvent donner de bonne performance en 
région tropicale humide. 
 

L’objectif de cette étude est donc de construire des modèles moins exigeants 
en nombre de variables explicatives donc plus économiques pour simuler les 
débits d’écoulement des cours d’eau en région tropicale humide. De façon 
pratique, cette étude permettra en effet d’optimiser et de comparer des 
modèles neuronaux et un modèle conceptuel global (GR2M) pour la 
simulation des débits mensuels du Bandama en Côte d’Ivoire. Pour atteindre 
cet objectif, cet article commence présenter la zone d’étude (géographie 
physique, hydrologie, hydrogéologie, géomorphologie et pédologie). Vient 
ensuite le chapitre matériel et méthode où sont présentés les données ainsi 
que leurs prétraitements, l’architecture des différents modèles et les critères 
de performance qui permettront d’apprécier les modèles développés. Les 
résultats ainsi que leur  discussion viendront mettre fin à cet travail. 
 
 

II - PRÉSENTATION DE LA ZONE D’ÉTUDE 
 

Les unités hydrologiques de cette étude sont les sous bassins du Bandama 
Blanc à Bada (24 010 km²) et à Tortiya (14 500 km²) dans la région Centre-
Nord de la Côte d’Ivoire.  
 

 
 

 

Figure 1 :  Localisation de la zone d’étude 
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Le Bandama Blanc, long de 1050 Km, s’étend du nord au sud du pays entre 
les latitudes 5°14’ et 10°21’N et les longitudes 4° et 7°W [7]. Les stations 
hydrométriques de Bada et de Tortiya ainsi que les stations synoptiques de 
Katiola et de Korhogo sont positionnées sur la carte de la Figure 1. 
 

Le choix de cette zone se justifie d’une part par le fait qu’elle renferme plus 
de 85% des barrages agropastoraux (Figure 2), ce qui représente un enjeu 
important en termes de gestion de la ressource en eau. D’autre part, elle est 
située juste au dessus du barrage hydroélectrique de Kossou, ce qui évite les 
problèmes de propagation lorsqu’on travaille sur des modèles pluie-débit.  
 
 

 
 

Figure 2 :  Localisation des barrages hydro agricoles en côte d’ivoire            
                  (DCGTx, 1992, Programme Petits Barrages, IRD) 
 
 
La zone est géo morphologiquement homogène avec des altitudes variant 
entre 200 et 300 m. Les sols y sont généralement ferralitiques et la végétation 
de type savanicole. Sur le plan des ressources en eaux souterraines, on y 
rencontre des aquifères fissurés surmontés par des aquifères d’altérites. Dans 
le réseau dendritique de cette zone, les eaux y circulent du Nord au Sud et les 
débits sont généralement croissants dans cette direction. Aux stations d’étude 
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(Bada et Tortiya), le Bandama Blanc a un régime relativement simple avec 
un minimum en février et un maximum en septembre. A ces deux stations, la 
crue la plus importante est généralement enregistrée en septembre (Figure 3).  

 

 
 

Figure 3 : Régime hydrologique du Bandama blanc aux stations de Bada et  
                 de Tortiya sur la période d’étude (1976-2002) 
 
 
III - MATÉRIEL ET MÉTHODES 
 
III-1. Présentation des données hydro-climatiques 

 
Une importante base de données hydrométrique a été utilisée. Ces débits 
mensuels ont été fournis par les services de l’hydrologie de Côte d’Ivoire 
(S/D de l’hydrologie). Les caractéristiques de ces séries hydrométriques sont 
résumées dans le Tableau 1. 
 

L’analyse de ces débits montre que la période la plus complète s’échelonne 
de 1971 à 2002. Cette période a donc été choisie pour la présente étude.  
Pour les variables explicatives (températures et pluies) de cette étude, deux 
séries de données différentes ont été exploitées. 
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Tableau 1 : Caractéristiques des chroniques de débits brutes m3/s 
 

 
Station 
hydrométri
que  

Superficie 
du bassin 
versant 

associé en km² 

 
Étendue 

 
Pourcen
tage de 
lacune 

 
Max 

 

 
Moy 

 
Min 

Bada 24 050 36 ans  
(1962 -
2002) 

15 % 827 99 0 

Tortiya 14 500 38 ans  
(1960 -
2002) 

16 % 450 100 0 

 
 

La première série a été obtenue auprès de la Société d’Exploitation et de 
Développement Aéroportuaire, Aéronautique et Météorologique 
(SODEXAM) et la seconde, elle a été extraite de la Base de Données IDIS 
via internet. Les données de pluies et de températures fournies par la 
SODEXAM sont celles des stations de Korhogo et de Katiola. Pour la station 
de Korhogo l’étendue de la série des précipitations mensuelles obtenues est 
de 32 ans (de 1971 à 2002) avec de nombreuses lacunes (environ 13 %).  
 

En ce qui concerne les températures à Korhogo, 33 ans de mesures (de 1971 
à 2002) sont disponibles ; tandis que pour la station de Katiola, les pluies 
journalières de 1949 à 2002 (54 années d’observation) ont pu être collectées 
et transformé en pluies mensuelles. Le Système d'Information Intégré de 
Base de Données (IDIS) fournit des données en ligne sur l'eau, l'agriculture et 
l'environnement. Il contient plus d’un milliard de séries chronologiques 
mensuelles continues sur l’ensemble de la surface de la terre. Cette base de 
données contient notamment les valeurs de précipitations et de températures 
mensuelles de 1900 à 2002 (103 ans) sur l’ensemble de la zone d’étude 
obtenues à l’aide de modèles de circulation générale et validées avec les 
données au sol des stations dans chaque pays concerné.  
 
 

III-2. Traitement et répartition des données hydrométriques et 
          climatiques 

 
Dans l’objectif d’avoir des séries de données continues, les données de pluies 
et de températures du système IDIS ont été comparées à la base de données 
de la SODEXAM à la station de Korhogo, choisie comme station de 
référence. De cette comparaison il ressort que les pluies de ces deux sources 
de données (pluie d’IDIS et pluie de SODEXAM) sont corrélées à 87% 
(Figure 4). On note aussi que les pluies de SODEXAM sembleraient 
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généralement supérieures aux pluies d’IDIS. Pour cette raison, les lacunes 
constatées dans les pluies de la SODEXAM ont été comblées avec celle de la 
base d’IDIS grâce à la relation 1 :  
 

171,208486,1 += IDISSODEXAM PluiePluie .    (1) 

 

 
 

Figure 4 : Corrélation pluie IDIS  et  pluie SODEXAM 
 
 

Pour les températures, cette comparaison révèle que les températures d’IDIS 
et celles de la SODEXAM sont corrélées à 91% (Figure 5). Ces deux 
températures étant relativement égales, on a donc utilisé dans cette étude les 
températures mesurées par la SODEXAM en remplaçant les données 
lacunaires par celle de la base IDIS. 
 

En ce qui concerne les séries de débits, les lacunes ont été comblées avec la 
méthode de la proportionnalité analogue. Cette méthode a consisté à faire le 
rapport des débits et des superficies des sous bassins et à les égaler. Une règle 
de trois permet ensuite de donner la valeur du débit inconnu dans chaque 
relation. 
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Figure 5 :  Corrélation température IDIS et température SODEXAM 
 
 

Une fois les lacunes des séries de températures de la SODEXAM comblées, 
il a été procédé à la détermination des températures moyennes. Ces 
températures ont été utilisées pour déterminer les valeurs 
d’évapotranspiration potentielles calculées par la méthode de Thornthwaite 
avec la relation 2 ci-après : 

ft
I

ETP aa ×××= )
10

(6,1      (2) 

avec :  
ETP : évapotranspiration mensuelle (cm)  
I : indice thermique annuel défini comme la somme des indices thermiques 
mensuels i,  

∑=
déc

jan

iI , 514,1)
5

(
t

i =         (3) 

t : Température moyenne mensuelle (°C)  
a  : Coefficient fonction de I 523 10)179271,70675,0( −××+×−×= IIIa  
f : Facteur fonction de la durée réelle du mois et de l’éclairement 

( ρ×= Nf  avec N : durée astronomique du jour pendant le mois    
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considéré (heure/jour), ρ : paramètre dépendant du nombre de jours par 
mois). 
 

Plusieurs méthodes de calcul de l’ETP existent ; mais, la méthode de 
Thornthwaite a été choisie pour plusieurs raisons :  

(i) inexistence de mesures directes d’évaporation;  
(ii) difficulté d’estimation du rapport durée réelle d’insolation/durée 

maximale possible (
H

h
) dans le cas de la méthode de Turc ; et  

(iii) facilité de détermination de l’ETP par la méthode de 
Thornthwaite. 
 

En ce qui concerne les pluies moyennes du sous-bassin du Bandama blanc à 
Bada, elles ont été estimées en considérant les pluies de Korhogo et de 
Katiola ; tandis que pour le sous-bassin du Bandama blanc à Tortiya, la pluie 
de la station de Korhogo a été considérée comme la pluie moyenne à cause de 
sa position centrale. Les données hydro-climatiques sans lacunes, obtenues 
après ces prétraitements présentés plus haut, ont été normalisées entre 0 et 1. 
Cela à permis d’éviter que les petites valeurs dans ces chroniques n’aient pas 
d’influence sur l’apprentissage des modèles neuronaux [8] à développer.  
 

Pour l’optimisation des modèles neuronaux, cette base de données ainsi 
normée a été subdivisée en trois (3) sous ensembles qui sont : 

- sous ensemble 1 : de 1976 à 1994 (70% des données) qui correspond 
à la période de calage où les poids synaptique des modèles neuronaux seront 
optimisés; 

- sous ensemble 2 : de 1995 à 1998 (15% des données) correspondant 
à la période d’arrêt prématuré qui permettra aux modèles neuronaux de ne 
pas sur-apprendre; 

- sous ensemble 3 : de 1999 à 2002 (15% des données) qui est la période 
de test où les performances des modèles neuronaux seront éprouvées.  
 

En ce qui concerne le modèle GR2M, dans l’optique de comparer les 
performances des différents modèles sur la même base, ce modèle à été calé 
sur 70% des données (1976 à 1994) et testé sur 15% des données (1999 à 
2002). 

 
 

III-3. Architecture et optimisation des modèles développés  
 
III-3-1. Présentation des réseaux de neurones 
 

Un neurone est un opérateur mathématique qui effectue généralement deux 
actions : la somme pondérée de ses entrées, que l’on appelle son «potentiel» 
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et le calcul de sa sortie en appliquant une fonction d’évaluation au potentiel. 
Un réseau de neurones est quant à lui un assemblage de ces neurones 
connectés entre eux selon une architecture bien définie. On distingue 
principalement les réseaux à une couche et les réseaux à plusieurs couches. 
C’est ce réseau, appelé « perceptron à deux couches » qui est utilisé dans ce 
travail. Ce modèle permet d’utiliser la propriété « d’approximation 
universelle » des réseaux de neurones. Les travaux de Mac Culloch et Pitts 
[1] ont favorisé l’application de ces modèles dans différents domaines 
notamment l’hydrométéorologique où de bons résultats ont été obtenus.  
 

En effet, depuis 1997, plusieurs centaines d’articles ont été publiés sur 
l’application des réseaux de neurones à la gestion des ressources en eau. La 
moitié des applications en hydrologie de ces modèles concernent la relation 
pluie-débit avec les travaux des auteurs comme : Dimopuoulos [9], Abrahart 
et See [10], Schumann et al. [11], Dechemi et al. [5], Li-chiu et al. [12] ; 
Wenri et al. [2] ; Ashu et al. [13] et Koffi [14]. 
 

 
 
 

Figure 7 : Architecture générale des modèles neuronaux utilisés   
 
 
La méthodologie inspirée de celle de Refsgaard [15] et de Dreyfus et al., [8] 
a permis de développer deux (2) variantes de modèle neuronal dirigé pour 
chaque station hydrométrique dont l’architecture générale est donnée par la 
Figure 7. Le choix des modèles dirigés est le fait de leur bonne performance 
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dans la modélisation (prévision et/ou simulation) des débits des cours d’eau 
par rapport aux modèles non dirigé. Plusieurs auteurs comme Eurisouke [16] 
dans la prévision des crues avec les réseaux de neurones ont obtenu de 
bonnes performances avec ces modèles dirigés.  
 

Dans cette étude les différentes architectures proposées sont le résultat de 
plusieurs phases d’optimisation ayant permis de sélectionner les meilleures 
modèles (Tableau 2). 
 
Tableau 2 :  Récapitulatif des meilleures architectures de réseaux de  
                       neurones retenus 

 
 
Pour l’optimisation des poids synaptiques des réseaux de neurones, le mode 
d’apprentissage supervisé avec la règle de correction de l’erreur a été utilisé. 
L’algorithme qui a permis cet apprentissage est le Levenberg-Marquardt 
(LM) avec la méthode de l’arrêt prématuré ou arrêt précoce. L’utilisation de 
l’arrêt précoce ou arrêt prématuré a permis d’éviter le sur-apprentissage des 
modèles neuronaux dans cette étude.  
 

 
Stations 

hydrométriques 

 
Modèles 

 
Variables 

Nombre 
de 

neurones 
sur la 
couche 
cachée 

 
Archi-
tecture 

 
Bada 

n°1 pluie à t, 
pluie à t-1 et 
débit à t-1 

6 3 6 1 

n°2 pluie à t, 
pluie à t-1, 
ETP à t,  ETP 
à t-1 et débit 
à t-1 

4 5 4 1 

 
Tortiya 

n°3 pluie à t, 
pluie à t-1 et 
débit à t-1 

6 3 6 1 

n°4 pluie à t, 
pluie à t-1, 
ETP à t, ETP 
à t-1 et débit 
à t-1 

6 5 6 1 
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III-3-2. Modèle GR2M 
 

Le modèle GR2M, version Mouelhi [17], a été utilisé comme modèle repère 
dans cette étude. Cette version comprend deux paramètres (la capacité du 
réservoir de production (1X ) (en mm) et le coefficient d’échanges souterrains 

( 2X ) (sans unité) (Figure 8). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 8 : Représentation du modèle conceptuel global GR2M selon Mouelhi  
                 et al. [17] 
 
 
Ce modèle est caractérisé par deux fonctions : une fonction de production et 
une autre de transfert [17]. 
 
 
III-3-3. Critères de performance  
 

Les critères de performance utilisés  pour cette étude sont : le critère de Nash 
et le coefficient de corrélation de Pearson. Le critère de Nash-Sutcliffe [18] 
qui a été utilisé dans ce travail est donné par la formule suivante : 
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( )
)1).(100(

2

1

2

∑

∑








 −

−
−=

−

i

i
ii

PT

PT
Nash      (4) 

avec : iT  et iP  respectivement les débits mesurés (observés) et calculés pour 

les Ni ,...,1= , 
−
P  est la moyenne des débits calculés. Si ce critère est supérieur 

ou égal à 60% alors le modèle peut être considéré comme bon ; dans le cas 
contraire il peut être considéré comme mauvais. 
 

Le coefficient de corrélation de Pearson est habituellement utilisé pour 
évaluer la performance des modèles en sciences de l’eau [19]. Il est obtenu en 
calculant la régression linéaire entre les valeurs (variable à expliquer) 
calculées et les valeurs (variable à expliquer) observées ou mesurées. Sa 
formulation est la suivante : 

∑∑

∑

=

==
)()( 2

1

2

1

i
N

i

N

i
ii

Pt

Pt
R

i

      (5) 

avec : iT  et iP  respectivement les débits observés et calculés pour les 

Ni ,...,1= , 
−
T et 

−
P  sont les moyennes respectives des débits observés et 

calculés. N , le nombre d’entrées; 
−

−= TTt ii , 
−

−= PPp ii . Si R  est positif et 
proche de 1, la relation entre les débits mesurés et les débits calculés par les 
modèles est de type linéaire, elle est croissante et le nuage de point est très 
concentré autour de la droite de régression.  
 
 
IV - RÉSULTATS ET DISCUSSION 
 
IV-1. Performances des modèles développés 
 
Dans l’optique de mieux apprécier la performance et la robustesse des 
modèles développés, les résultats présentés dans ce chapitre concerne à la 
fois les phases de calage et de validation pour les performances des différents 
modèles (Nash et R). En ce qui concerne les hydrogrammes, il est présenté 
ici seulement ceux obtenus en validation (Figures 9 et 10).  
 

A la lecture du Tableau 2, on remarque que les résultats obtenus avec les 
différents modèles développés (modèle GR2M et modèles neuronaux (n°1 à 
4)) sont généralement très satisfaisants tant en calage qu’en validation. Les 
critères de Nash sont généralement supérieurs à 70% et les coefficients de 
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corrélation de Pearson varient de fort à très forts entre 0,83 et 0,94 en calage 
et en validation (Tableau 2).  
 
Tableau 2 : Performance des modèles neuronaux (n°1 à 4) et du modèle  
                   GR2M aux stations d’étude 
 

 Calage Validation 
Nash R Nash R 

Modèles avec la pluie 
comme variable 

explicative 

    

n°3 83% 0,91 82% 0,91 
n°1 88% 0,94 73% 0,85 

Modèles avec la pluie et 
l’ETP comme variables 

explicatives 

    

GR2M à Bada 
n°2 

 
GR2M à Tortiya  

72% 
89% 

 
80% 

0,83 
0,94 

 
0,90 

71% 
80% 

 
69% 

0,85 
0,90 

 
0,83 

n°4 84% 0,93 81% 0,91 
     

 
 
L’ajout de l’évapotranspiration potentielle améliore la performance des 
réseaux neuronaux aux stations d’étude, notamment pour la station de Bada 
en test. La station de Tortiya présentant avec les modèles neuronaux des 
résultats équivalents.  
 

Une comparaison faite entre les performances des modèles avec la pluie et 
l’ETP comme variables explicatives montre que les modèles neuronaux n°2 
et n°4 sont plus performants que le modèle GR2M tant en calage qu’en 
validation. Aussi pour un même nombre de variables explicatives en entrée, 
les réseaux de neurones sont plus performants que le modèle GR2M avec un 
gain d’environ 10 % sur le critère de Nash. L’analyse du Tableau 2 permet 
de constater qu’avec la pluie seulement en entrée les modèles neuronaux 
apparaissent plus performants que le modèle GR2M à Bada et à Tortiya. À la 
station de Bada, le modèle neuronal n°3 est plus performant que le modèle 
GR2M à 16% et 2% respectivement en calage et en validation. 
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Figure 9 : Évolution des hydrogrammes mesurées et calculés par les modèles 
GR2M et les modèles neuronaux aux stations de Bada (a) et de Tortiya (b) 
pendant la validation 

 
 

A la station de Tortiya, le modèle neuronal n°3 est aussi plus performant que 
le modèle GR2M à 3% et 13% respectivement en calage et en validation.   
Au niveau de la dynamique des écoulements (Figure 9), on note une bonne 
reproduction des hydrogrammes à toutes les stations hydrométriques (Bada et 
Tortiya) par les modèles neuronaux n°1 et n°3. Les hydrogrammes observés 
et calculés sont en effet très bien synchrones avec les mois où apparaissent 
les crues et les étiages. Mais, malgré cette synchronisation, on observe 
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quelques décalages entre ces hydrogrammes surtout au niveau des débits 
extrêmes.  

 

À la Figure 10, on note aussi que la dynamique des écoulements du 
Bandama blanc à Bada et à Tortiya est très bien reproduite par les trois 
modèles développés. Les hydrogrammes observés et calculés sont également 
bien synchrones. Mais, comme précédemment, on note quelques décalages 
entre ces hydrogrammes mesurés et calculés. Les hydrogrammes calculés par 
le modèle GR2M sont ceux qui s’écartent davantage des hydrogrammes 
mesurés. Cela concorde avec les valeurs des critères de Nash résumés dans le 
Tableau 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 10 : Évolution des hydrogrammes mesurées et calculés par les 
modèles GR2M et les modèles neuronaux aux stations de Bada (c) et de 
Tortiya (d) pendant la validation 
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IV-2. Discussion des résultats  
 

Les modèles GR2M et les modèles neuronaux (n°1, n°2, n°3 et n°4) simulent 
très bien les débits du Bandama blanc aux stations de Bada et de Tortiya. En 
effet, en calage ou en validation, les Nash obtenus aux stations de Bada et de 
Tortiya par ces modèles sont tous supérieurs à 60 %. En ce qui concerne les 
coefficients de corrélation R, ils sont positifs et supérieur ou égal à 0,90 à 
toutes les stations traduisant ainsi la forte corrélation entre les débits mesurés 
et ceux calculés par le modèle GR2M et les modèles neuronaux.  
 

Les modèles neuronaux n°2 et n°4 sont plus performants que leurs 
homologues n °3 et n°1, même si dans le cas de la station de Bada le résultat 
serait plutôt équivalent. En effet, l’évapotranspiration potentielle (ETP) 
ajoutée à l’entrée de ces modèles (modèles n°2 et n°4) exprime les 
éventuelles pertes d’eau au niveau des bassins versants d’étude. C’est une 
information complémentaire qu’on apporte aux réseaux de neurones pour 
leur permettre de simuler correctement les débits du Bandama blanc aux 
différentes stations d’étude. L’ajout donc de l’évapotranspiration potentielle 
(ETP) en entrée améliore les performances des modèles à toutes les stations 
d’étude.  
 

En comparant les résultats obtenus dans cette étude avec ceux de certains 
auteurs, on remarque que les résultats obtenus ici sont forts satisfaisants et 
sont différents de ceux obtenus par Tarik [20] par exemple avec un réseau de 
neurones à une seule couche cachée comportant quatre neurones. Les critères 
de Nash obtenus par Tarik en 2006 ne dépassent pas 60 %. Cette différence 
est à mettre à l’actif de la structure du modèle développé ici qui est dirigé du 
fait de l’introduction des débits mesurés au pas de temps précédent comme 
entrée supplémentaire du réseau de neurone. Il en est de même pour les 
travaux de Tarik et al [5], où le modèle GR2M apparaissait plus performant 
que le réseau de neurone développé par ces auteurs. Dans leur cas, les effets 
de la longueur des périodes de calage (de 6 ans) utilisées apparaissent trop 
courtes pour permettre l’extraction des singularités dans les séries de données 
sur le bassin versant de la Cheffia (Nord-Est de l’Algérie). Cette période de 
calage est en effet plus de 3 fois inférieure à celle utilisé ici sur le Bandama 
Blanc aux stations de Bada et de Tortiya.  
 

En plus d’être plus performants, les réseaux de neurones sont également plus 
économiques que le modèle conceptuel global GR2M. En effet, avec 
seulement la pluie en entrée, les modèles neuronaux n°1 et n°3 apparaissent 
plus performants que le modèle GR2M qui intègre à la fois la pluie et 
l’évapotranspiration potentielle (ETP) comme variables explicatives. Ce qui 
veut dire que pour un résultat plus satisfaisant, le modélisateur dépense moins 
avec les modèles neuronaux qu’avec le modèle conceptuel global GR2M. Il 
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serait alors moins coûteux d’utiliser les modèles neuronaux avec en entrée 
seulement la pluie qu’un autre modèle qui demanderait plus de variables 
explicatives.  
 
 
V -  CONCLUSION  

 
Tout au long de ce travail, il a été mis au point deux (2) types de modèles : 
les modèles neuronaux (modèle n°1 ; n°2, n°3 et n°4) et le modèle conceptuel 
global GR2M. Ces modèles ont donné en général de très bonnes 
performances tant en calage qu’en validation (Nash supérieur à 60% et 
coefficient de corrélation de Pearson supérieur à 80%). Aux deux stations 
hydrométriques d’étude (Bada et Tortiya), l’ajout de l’évapotranspiration 
potentielle (ETP) comme variable explicative à l’entrée des modèles 
neuronaux développés a fortement amélioré leurs performances. 
 

En comparant les performances du modèle conceptuel GR2M à celles des 
modèles neuronaux, il apparaît dans cette étude que les dernières cités sont 
les plus performants et les plus parcimonieux pour la simulation des débits 
mensuels sur un bassin versant en régime tropical humide comme celui du 
Bandama blanc à Bada et à Tortiya. On peut aussi retenir que la performance 
des modèles neuronaux est fortement liée aux stations d’étude, donc 
directement liée à la qualité et à la durée des données collectées. Il est 
essentiel de signaler que pour des données bruitées, les réseaux de neurones 
sont plus aptes à simuler les débits mensuels que le modèle conceptuel global 
GR2M qui est plus adapté à l’estimation du bilan hydrologique en situation 
moins perturbée. En définitif, même si les réseaux de neurones sont adaptés à 
la modélisation des débits mensuels dans un contexte de relation non-linéaire, 
encore faudrait-il que ces données s’étendent sur plusieurs années pour 
faciliter, pendant le calage, la détection des singularités dans les données. 
 
 

Remerciements 
 

Les auteurs de cet article remercient la Société d’Exploitation et de 
Développement Aéroportuaire, Aéronautique et Météorologique 
(SODEXAM), le Système d'Information Intégré de Base de Données (IDIS) et 
la Direction de l’Hydraulique Humaine (DHH), notamment le Système IDIS 
pour leur avoir fourni les données hydro climatiques utilisées dans cette 
étude. Ils remercient également les instructeurs dont les critiques et les 
suggestions ont permis d’améliorer l’intérêt scientifique et la lisibilité du 
présent article. 
 



Rev. Ivoir. Sci. Technol., 17 (2011) 151 – 171 

Yao Blaise KOFFI  et al. 

170

RÉFÉRENCES  
 

  [1]  -  W. S. MC CULLOCH ET W. H. PITTS «A logical calculus ideas immanent 
in       nervous activity». Bulletin of Mathematical Biophysics, Vol. 5, (1943) 
115-133. 

  [2]  -  H. WENRI, B. XU, et C. H. AMY, «Forecasting flows in Apalachicola river 
using neural networks». Hydrological Processes, Vol. 18, (2004) 2545-2564. 

  [3]  -  A. JOHANNET, P. A. AYRAL. et B. VAYSSADE, «Modelling non measurable 
processes by neural networks: forecasting underground’s flow». International Joint 
Conferences on Computer, Information and Systems Sciences and Engineering/, 4-
14 December, Springer, (2006) 6  

  [4]  -  P. A. AYRAL, «Contribution à la spatialisation du modèle de prévision des 
crues éclaires ALHTAIR. Approche spatiale et expérimentale, application au 
bassin versant du Gardon d’Anduze». Thèse de Doctorat, Université de 
provence, Aix-Marseille 1, LGEI, Ecole des Mines d’Alès, Alès, France, 
(2005) 311 

  [5]  - N. DECHEMI, B. A TARIK et A. ISSOLAH, «Modélisation des débits 
mensuels par les modèles conceptuels et les systèmes neuro-flous». Revue 
des Sciences de l’Eau. Vol. 16 n°4, (2003) 407-424. 

  [6]  - B. A. TARIK et N. DECHEMI, «Daily rainfall–runoff modelling using 
conceptual and black box models; testing a neuro-fuzzy model». Journal des 
Sciences Hydrologiques, Vol. 49, (2004) 919-930. 

  [7]  -  C. LÉVÊQUE, C. DEJOUX et A. ILTIS, «Limnologie du fleuve Bandama, 
Côte d’Ivoire». O.R.S.T.O.M., Hydrobiologie, 24 rue Bayard, Paris (France). 
Hydrobiologia, Vol. 100, (1983) 113-141. 

  [8]  - G. DREYFUS, J. M. MARTINEZ, M. SAMUELIDES, M. B. GORDON, F. 
BADRAN, S. THIRIA et L. HERAULT, «Réseaux de Neurones : 
Méthodologie et application». 2ème édition, Groupe Eyrolles, (2004) 374  

  [9]  -  L. DIMOPOULOS, S. LECK, et J. LAUGA, «Modélisation de la rélation 
pluie-débit par les réseaux connexionnistes et le filtre de Kalman». Journal 
des Sciences Hydrologiques, Vol. 41, n°2, (1996) 179-193. 

[10]  - R.J. ABRAHART et L. SEE, «Comparing neural network and autoregressive 
moving average techniques for the prevision of continuous river flow 
forecasts in two contrsting catchments». Hydrological Processes, Vol. 14, 
(2000) 2157-2172. 

[11]  -  A. H. SCHUMANN, R. FUNKE et G. A. SCHULZ, «Application of a 
geographic information system for conceptual rainfall-runoff modelling». 
Journal of Hydrology, Vol. 240, (2000) 45-61. 

[12]  -  C. LI-CHIU, C. JOHN, et C. YEN-MING, «A two-step-ahead recurrent 
neural network for stream-flow forecasting». Hydrological Processes, Vol. 
18, (2004) 81-92. 



Rev. Ivoir. Sci. Technol., 17 (2011) 151 – 171 

Yao Blaise KOFFI  et al. 

171

[13]  -  J. ASHU, K. P. SUDHEER et S. SANAGA, «Identification of physical 
processes inherent in artificial neural network rainfall-runof models». 
Hydrological processes, Vol 18, (2004) 571-581 

[14]  -  Y.B KOFFI, «Étude du calage, de la validation et des performances des 
Réseaux de Neurones à partir des données hydro climatiques du bassin 
versant du Bandama Blanc au nord de la Côte d’Ivoire». Thèse de Doctorat 
Unique, Université de Cocody, Abidjan, Côte d’Ivoire, (2007) 284. 

[15]  -  J. C. REFSGAARD, «Paraméterisation, calibration and validation of 
distributed hydrology models». Journal of Hydrology, Vol. 198, n°1 et 4, 
(1997) 69-97. 

[16]  -  S. EURISOUKE, «Prévision des crues par réseaux de neurones formels». 
Rapport de stage, Master Professional en Géotechnologie Environnementale, 
École des Mines d’Alès, France, (2006) 50. 

[17]  -  S. MOUELHI, «Vers une chaîne cohérente de modèles pluie-débit 
conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et 
journalier». Thèse de doctorat de l’Ecole Nationale du Génie Rural, des Eaux 
et des Forêts, CEMAGREF, France, (2003) 263  

[18]  -  J. E NASH. et J. V. STUCLIFFE, «River flow forecasting through 
conceptual models». Part 1. A discussion of principles. Journal of Hydrology, 
Vol. 10, ( 1970) 282-290. 

[19]  -  X. LEGATES et J. MCCABE, «Evaluating the use of "goodness-of-fit" 
measures in hydrologic and hydroclimatic model validation». Water 
Resources Research, Vol. 35, n°1. (1999) 233-241. 

[20]  -  B. A. TARIK, «Modélisation pluie-débit mensuelle et journalière par les 
modèles conceptuels et les systèmes neuro-flous (application aux bassins 
Algériens) ». Thèse de Doctorat d’État, Institut National Agronomique 
d’Alger, Algérie, (2006) 242 p. 


