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RÉSUMÉ 
 

Cet article présente une commande par retour d’état non linéaire pouvant 
stabiliser le suivi de trajectoire d’un robot mobile à quatre roues. La 
modélisation  du robot est basée sur la mise en place de deux types de 
représentation. Le premier type ressort la matrice dynamique des positions-
orientation. Le deuxième type concerne les matrices du modèle polaire et du 
modèle cinématique.  
La commande par retour d’état est ensuite mise en place par la technique du 
retour d’état. Des fonctions candidates de Lyapunov sont utilisées pour 
justifier la stabilité du système. Une dynamique de l’erreur est enfin établie 
pour la commande respectivement sur des trajectoires circulaire et 
sinusoïdale.   
 
Mots-clés : Commande, Robot Mobile, Retour d’état 
 
 
ABSTRACT  
 An approach by return of stats of state no linear control law for an 
autonomous mobile robot 
 

This paper presents a control by nonlinear return of state which can stabilize 
the follow of trajectory of a mobile robot with four wheels. The modeling of 
the robot is based on the installation of two types of representation. The first 
type brings out the dynamic matrix of the position-orientation. The second 
type relates to the matrices of the polar model and the kinematic model.  
The control by return of state is then installation by the technique of the 
return of state. Functions candidates of Lyapunov are used to justify the 
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stability of the system. A dynamics of the error is finally established for the 
order respectively on trajectories circular and sinusoidal.   
 
Keywords : Control, Robot Mobil, feedback 
 
 

I - INTRODUCTION 
 
L’utilité des robots mobiles sont à présent, bien justifiée par les références 
[1,2]. Le nombre de récentes contributions démontre le haut niveau des 
activités de recherches dans ce domaine. 
Dans [3], une nouvelle règle de commande pour déterminer les vitesses 
linéaires et rotationnelles d’un véhicule est présentée. L’étude est basée sur 
l’hypothèse énoncée ci-dessus qu’une « traction de vitesse parfaite » est 
atteinte. La référence [4]  écarte la première hypothèse et propose une 
structure de commande qui réalise l’intégration d’une commande 
cinématique un réseau neural de commande de rotation informatisé. Dans [5], 
une commande robuste de synthèse d’un véhicule à quatre roues motrices 
(4ws) est conçu avec des fonctions optimisées et robustes afin d’atténuer les 
perturbations externes alors que le taux de mouvements est choisi comme le 
seul signal de retour. La référence [6]  étudie les robustes directions et 
tractions des véhicules à quatre roues motrices avec vitesse, une masse, 
moment d’inertie, et interaction motrice variable. Une commande de 
découplage d’entrée et de sortie, ainsi que le schéma de commande robuste 
est proposée. La commande d’infinité H et les gains de l’observateur sont 
obtenus en résolvant deux nouvelles équations algébriques de Riccati. Dans 
la plupart  des contributions précédentes, le robot mobile est représenté  soit 
par les équations  cinématiques soit par un modèle linéarisé  quand les 
équations  dynamiques sont utilisées. 
Cet article introduit une innovation sur le problème  de commande de traction 
d’un robot mobile. L’idée fondamentale est de diviser ce problème délicat  en 
deux (2) problèmes primordiaux. Cette idée est en effet, le point culminant de 
notre étude. Elle est motivée par l’observation que beaucoup de non-
linéarités d’un modèle de robot apparaissent sous forme d‘action d’équations. 
Ainsi, une méthodologie d’étude basée sur le modèle est proposée. Le 
modèle hautement non-linéaire d’un robot mobile est divisé en deux parties. 
Un modèle espace état dans lequel trois entrées de commande intermédiaire 
sont expressément introduits, et trois équations algébriques non-linéaires 
impliquant les entrées de commande véritables et intermédiaires. D’abord, 
une méthodologie rétrospective [7]  est utilisée pour synthétiser les équations 
d’entrée intermédiaire qui résolvent le problème  de traction de trajectoire. 
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Ensuite, la méthode Newton Raphson est utilisée pour résoudre les équations 
algébriques non-linéaires afin s’obtenir les véritables entrées de commandes. 
L’article est organisé de la manière suivante. Le modèle d’état du robot 
mobile est présenté en section II. L’objectif  de l’étude  est clairement exposé 
à la section III. La section IV représente la méthode backstepping de l’étude 
de la commande  utilisée pour obtenir les équations intermédiaires d’entrée. 
Des simulations sont faites et les résultats sont présentés en section V. 
L’article se termine par une conclusion. 
 
 

II - METHODOLOGIE 
 

II-1. Le modèle du robot mobile  
 

Le robot mobile à quatre (4) roues étudié dans cet article, est illustré à la figure 1 
suivant un système d’axes fixe xb et yb. Ce système d’axes ressort les positions 
de déplacement x et y ainsi que l’orientation θ du robot mobile autour de l’axe z.  
 

 
 
II-2. Modélisation du robot  
 

Les positions et l’orientation du robot mobile donné à la figure 1 peuvent être 
représentées par le système matriciel ci-dessous : 
 

                            χ = [x  y  θ]T                                    (1)  
 

où χ est le vecteur de coordonnées généralisées, x et y les positions du robot 
mobile et θ l’orientation du robot mobile, l’ensemble par rapport au repère 
fixe. 
La mesure relative au repère fixe de la vitesse du mobile est représentée par : 
 

χ&  = [ x&   y&   θ& ]T                                 (2) 
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Avec χ&  le vecteur des vitesses généralisées, x& , y&  et θ&  représentent 
respectivement les vitesses du robot mobile et la vitesse angulaire du robot 
mobile, l’ensemble par rapport au repère fixe.  
Il est toutefois utile de préciser que l’équation la plus utilisée pour la commande 
cinématique des robots mobile par rapport à un système d’axes à exemple 0 est 
donnée par : 
 

                                     
 

Les variables ν et ω représentent respectivement la vitesse longitudinal du centre 
de masse et la vitesse angulaire du centre de masse.  
De (1), découle la représentation des équations suivantes décrite par les vitesses 
dans le système de référence dynamique et cinématique du robot mobile en 
mouvement de rotation de l’angle α autour de l’axe z. 
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En considérant le principe des contraintes nonholonomiques, nous avons :  
 

                               (6) 
 

La représentation polaire quant à elle peut être abordée suivant la Figure 2 : 

 
 

Figure 2 : Robot Mobile en système d’articulations polaires 

(4) 

(5) 

(3) 
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De la Figure 2, découlent les données ci-dessous : 
 

22
mm yx +=ρ

                                   (7a) 
 

α = atan2(ym – xm ) - θ                                                     (7b) 
 

φ  = 2

π
- θ                                                                                   (8) 

 

Avec ρ α φ qui représentent respectivement. 
De cette représentation polaire, découle la dynamique ci-dessous 
 

ρ& = - νx cosα                                                                       (9) 
 

α&  = ρ
αsin

νx - ω                                                                         (10) 
 

φ&  = - ω                                                                                            (11) 

avec  α (0) ∈ ( 2

π−
, 2

π
) 

 
II-3. Commande par retour d’état 
 
La commande par retour d’état est abordée par le schéma de la Figure 3. 

 
 

Figure 3 : Trajectoire du robot mobile 
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                                                  (12) 
 

                                                                                    (13) 
 

Le modèle dans l’espace d’état est donné par : 

de l’expression ρ& = - νx cosα       on pose : 
 
  x1 = ρ                                                                          (14) 

de l’expression α&  = ρ
αsin

νx - ω   on pose : 
     x2 = α                                                                                  (15) 

de l’expression φ
&
 = - ω   on pose :  

 
       x3 = φ                                                                        (16) 
 
de (13), (14) et (15) avec le principe des dérivées premières on a : 
 

                                                                                     (17 
 
 
 
II-3-1. Stabilité du système 
 

Nous allons démontrer la stabilité du système en utilisant une fonction 
candidate de Lyapunov. Cette fonction une fois dérivée et mise en relation 
avec le modèle d’état doit donner un résultat négative. 
Ainsi, considérons la fonction candidate de Lyapunov suivante : 
 

                                        (18) 
 
En dérivant cette fonction on obtient : 
 

                                      (19) 
 
En remplaçant les différentes expressions de (17) dans (18), on a : 
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             (20) 
Après le developpement de (19), on obtient : 
 

                 (21) 
 
De (21), nous pouvons ressortir, les expressions des commandes u2 et u2 
pouvant justifier la stabilité du système. Ainsi, on aurons : 
 

                                  (22) 
 

                                          (23) 
 
D’où la nouvelle expression de (21) par substitution. 
 

        (24) 
 
A partir de (24), nous démontrant aisément la stabilité du système. 
 
II-3-2. Dynamique de l’erreur 
 

(3) et (4) peuvent être réorganisés de la façon suivante en prenant en compte 
les trois erreurs et en s’appuyant sur la Figure 3 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Dynamique des erreurs 
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(25) 
 
Avec  
              θe = eθ= θr - θ                                                   (26) 
 
 

(27) 
 
 
 
Calculons la dérivée de la première expression de la dynamique de l’erreur 
donnée par (25) : 
 

       (28) 
 
En développant (28) et en considérant les relations trigonométriques d’une 
part et les contraintes nonholomiques donnée par (5) d’autre part, on trouve : 
 

                             (28a) 
 

(28a) peut être réorganisée en considérant (26) : 
 

            
                                

 
                                 

 
 

                (28b) 
 

De même, en calculons la dérivée de la deuxième et la troisième expressions 
de la dynamique de l’erreur donnée par (25) et en appliquant la logique des 
calculs précédents, on trouve respectivement: 

                                       (29) 
 

                                                  (30) 
 
(28b), (29) et (30) sous forme matricielle, on obtient : 
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(31) 
 
 
Comme précédemment, nous proposons une fonction candidate de Lyapunov 
donnée ci-dessous : 
 
 

(32) 
 

De cette fonction candidate découle les lois de commande suivante : 
 
                 (33) 
 

                                                  
(34) 

 
 
III – RÉSULTATS ET DISCUSSION 
 
III-1. SIMULATION 
 
Les simulations sont à présent faites pour évaluer l’effectivité de la méthode 
d’étude proposée. Les paramètres du robot mobile à deux roues sont donnés 
au Tableau 1. Ce véhicule est illustré à la Figure 1. Le robot est utilisé pour 
suivre le schéma circulaire représenté par les équations suivantes : 
 

2
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2
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Les gains du contrôleur sont donnés dans le Tableau 2. La Figure 4 illustre 
la performance de la traction de la commande. La position initiale du robot 

est  fixée à x = 0.1m, y = 0 et l’angle 
015θ = − . On peut voir qu’une traction  

d’une parfaite suivie est atteinte. Le robot est capable de suivre la trajectoire 
désirée. La Figure 5 montre la vitesse du véhicule. Après le début de la 
trajectoire, une vitesse état de près 0.3 m/s est atteinte à t = 0.2 second. Les 
Figure 6 et 7 montrent, d’autres variables états du système. Toutes 
convergent vers leur valeur état après une  seconde. Les sorties de commande 
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sont illustrées aux Figures 8a  et 8b. Une fois encore,  ces signaux sont tous 
bornés et leurs valeurs état sont réalistes. 
 

Tableau 1 : Paramètres du Model 
 

M 1kg=  rL 2m=  r 1µ =  
J 1N.m=  fL 2m=  f 1µ =  

 
Tableau 2 : gains du Contrôleur 

 

1k 5=  2k 5=  3k 10=  
4k 100=  5k 100=  6k 10=  
7k 100=  8k 100=  9k 10=  
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Figure 4 : Mouvement de robot dans le plan x/y : tire-ligne : trajectoire  
                 réelle, ligne continue : trajectoire désirée. 
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Figure 5: Vitesse V 
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Figure 7: vitesse angulaire 
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V - CONCLUSION 
 

Une nouvelle approche est proposée pour désigner  une commande de 
traction de trajectoire pour un robot mobile à deux roues. Elle combine la 
méthode d’étude de la commande backstepping non-linéaire et celle de la 
méthode de Newton-Raphson, une méthode de résolution d’une équation 
algébrique non-linéaire. 
Les  simulations sont utilisées pour évaluer la performance  de la commande. 
Les résultats démontrent l’efficacité de la nouvelle méthode d’étude de 
commande. 
La nouvelle commande est capable de suivre un schéma circulaire parfaite. 
Les travaux à venir soulèveront le même problème de traction quand les 
paramètres du robot  peuvent changer ou sont inconnus ce qui fera ressortir 
l’approche adaptative.    
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