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ABSTRACT

This paper investigates the mixed mode I+lll logdad a non-planar crack that

fluctuates about an average fractuf&® “plane in an infinitely extended
isotropic elastic medium. The crack is a continuaugy of long non-straight
dislocations with infinitesimal Burgers vectors. Thdislocations are

perpendicular to the ~direction of fracture propagation, have an arbjtrar
periodic small shapé =¢(%) spreading in the2*s ~plane and their portions

may be arbitrarily inclined with respect to tH& ~ direction. The dislocation

distribution contains two types of dislocation: ldcations 1 have an edge
average character and respond to mode | loadistpaditions 2 have a screw
average character and respond to mode lll. Thdadisment and stress fields of
two dislocations, with arbitrary shape and averelgaracter of edge or screw
type, are first given. Expressions for the strdssufthe crack front and crack

extension forceC per unit length of the crack front are also givEermula
for<G> a spatial average ©f, is provided for one special crack having a

segmented front. Conditions under whichG> is maximum conform to
experimental measurements of crack-front twist@angrsus applied stress.

Keywords : Crack propagation and arrest, energy release rate,
Dislocations, crack mechaniesiergy methods

RESUME
Une étude de la sollicitation en mode mixte I+llld’'une fissure non
plane utilisant des dislocations infinitésimales

Cet article étudie la sollicitation, en mode mixtdll, d'une fissure non
plane qui fluctue autour d’'un plan moyefsdans un milieu élastique
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isotrope infiniment étendu. La fissure est une éngontinue de longues
dislocations avec des vecteurs de Burgers infinitégx. Les dislocations

sont perpendiculaires a la directidhde propagation de la fracture, ont une
forme arbitraire petite’ =$(%) étalée dans le plaa*s, et leurs portions

peuvent étre arbitrairement inclinées par rapportaadirection®. La
distribution contient deux types de dislocatioas dlislocations de type 1 ont
un caractére moyen coin et obéissent au modesl digdocations de type 2
ont un caractere moyen vis et obéissent au modelLd$s champs de
déplacement et de contrainte de deux dislocatewves; une forme arbitraire
et un caractére moyen coin ou vis, sont d’abordhédenDes expressions pour
la contrainte au niveau du front de fissure etdad d’extensionC de la
fissure par unité de longueur du front de fissuna £galement données. Une

formule d’'une moyenne spatiale @e<G>, est établie dans le cas
particulier d’une fissure non plane dont le frost gegmenté. Des conditions

pour lesquellesG>est maximum sont conformes & des mesures
expérimentales d’angles de torsion du front deufisssen fonction de la
contrainte appliquée.

Mots-clés :Propagation et arrét de la fissure , force d’extensde la
fissure , dislocations ; mécanique deulture , méthodes d’énergies

I - INTRODUCTION

The present study belongs to the mechanics ofuiradh elastic solids. In

what follows, the crack surface is assumed to dlate about an average
plane because this is the kind of broken surfaganconly observed (see
below). On the scientific side, the conditions (&rageometries, loading

modes ...) under which such cracks develop are ndit wnelerstood. Of

particular interest are methods leading to expoessfor the stress about the
crack front and crack extension force. The valaéen by these quantities,
when compared with those corresponding to the planack, could then

explain the occurrence of non-planar cracks in mealterials. With an

understanding of fracture development, we can builgh performance

engines in industry.

In a material containing initially a planar cradybsequent fracture under
mixed mode I+lll loading generally occurs on a manar surface that
fluctuates about the initial crack plane. This otaBon is derived from

numerous experiments performed under various diftecconditions. The

broken surface exhibits the following featurébigure 1) (in glass by
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Sommer [1], polymethyl methacrylate (PMMA) by Cooked Pollard [2],
steel by Yates and Miller [3] and Hourlier and Ring4], among others):

— ~sa a a a . .
«  For smalM =023/022=6% \\here?22and?23are the applied tension
and shear respectivelyFigure 1), facets B are almost vertical

(% =712y and facetsA horizontal ¢ =3°): inclination angle? of
facets A increases apparently with the extension of theckcra
(Sommer [1]; see also Lawn [5]).

«  %rincreases from 3° to 45° approximately Msincreases from zero
to infinity [2- 4]. (Figure 2), reproduced from Cooke and Pollard [2],
shows this trend.

We stress that the shaf%ﬁ‘t(x?%) of the crack front may differ somewhat

from the schematic one shownFhingure 1. ¢ may deviate from straight lines
for instance. In the present study, we shall priesegeneral treatment by

expandingz into a Fourier series.

The study of fracture in mixed mode I+lIl in solidsquires a non-planar
crack model that provides expressions for phystrantities pertinent to
discuss crack propagation. For this purpose, aaatequantity is the crack
extension force per unit length of the crack fr(mt energy release rafe)
Since fracture proceeds through the motion of arosaopic length of the

crack front, it appears necessary to calculatevarege<G > and look for a

relation betweel! , #» and % that maximizes G >. This relation may then
be confronted with experiments asHigure 2.

A number of theoretical analyses devoted to nongilaracks have been
published. Works by Gao [6], Xu et. 4¥] and Movchan et al8] refer to
perturbation methods where effort is concentratpdnuproviding stress
intensity factor (SIF) formulae that are given istf order in perturbation.
SIF expressions are then related @ by the usual plane strain relation.
Under such conditions averagiig as performed in the present study in
Section 4, simply reduces the result to that ofglamar crack; this evidently
does not depend on the non-planar crack relevaatgers. Similar works
providing first order SIF and involving asymptotenalysis for three-
dimensional elasticity problems have also beenigiudl (Ball and Larralde
[9]; Lazarus et al. [10]). Ball and Larralde [9] r@econcerned with the
stability of mode | cracks. Mixed mode loading wexd attainable. Lazarus et

al. [10] attempted to explain the increasé?afwith crack length as measured
by Sommer [1]. They provided an approximate fornfolaG at pointA as

defined inFigure 1 to second order in a parameter, dendtk§do by them,
that is a measure of the derivative %f with respect to crack length. The
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obtained relation overestimates actual rotatioesrdity nearly 3 orders of
magnitude [10]. However they obtained a quiet goatue of the global
rotation rate by a more complex criterion basedtlm maximization of
<G> and SIF expressions but only for three or fournpdbending
experiments. In short, existing theoretical worksnon-planar crack growth
are seriously limited when applied to mixed mod#gl llbading of materials;
possible limitations are pointed out in the disaussSection 5.

We have previously considered a model of non-plamack under mode |
loading that fluctuates about an average plane [ih&]crack has a sinusoidal
front perpendicular to the direction of fractur@pagation and consists of a
continuous distribution of sinusoidal edge dislamad [12]. The stress field
of a sinusoidal edge dislocation leads to the stad®ut the crack front and
crack extension force. It is then possible to campaur results with those
obtained by other methods and experiments. Thisoaph is maintained in
the present work and extended to mixed mode IeHHIng; the crack front,
instead of being sinusoidal, can now be arbitrévg. provide expressions for

stress and crack extension for€ealong the crack front, perform an average

<G> ofG, establish a relation linkifg , ¥» and % that maximizes<G >

and finally confront the properties of the modethmexperiment. The crack
consists of a continuous distribution of infinitelpng type 1 and 2
dislocations with edge and screw average characiéms dislocations are

perpendicular to thé® ~ direction of fracture propagation. As for the crack

front in Figure 1, the shapef %) of the dislocations in th&2*s ~plane is

periodical and fluctuates about an average fraqilaee. Elastic fields of the
two types of dislocation are given in Sections @ 8nWe first express the
plastic distortion (Section 2.1) and get the asgedi displacement field using
a method developed by Mura [13] as explained irti@e@.2. In Section 4,
our crack model and analysis are first presenteel tone particular crack
with a segmented front is considered. Section Sroats the properties of
the model with previous works and experiments amtltiding remarks are

listed in Section 6. A Cartesian systémis used throughout
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Figure 1: Schematic shape of a crack front, in mixed mod# le&ding of a
solid, in a plane perpendicularthe * ~ direction of fracture

XqX3 ~

propagation. The crack fluctuatésat the plane and

consists of planar facets with ination angle#» and % at point
A and B of the average fracture plarespectively. In this

geometry, the crack is subjectedrt@pplied tensioﬁf;12 in the

— - - a - - . -
X2 ~ direction and sheaf 23 in the X3 direction.
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Figure 2 : Crack-front twist anglé’A(degrees) as a function of the ratio M
(shear/tension) of the applied s$es in polymethyl methacrylate
(symbalor+) and steel ¢) as reproduced from Cooke and Pollard
[2]. Curve (1) corresponds to equat{®6) in the text; curve (2) and

(3) correspond to (52) wiffs =772 and /4 respectively, plots being

restricted t6M+ %) for which <Cv > is maximum and larger than 1.
V=038 (PMMA).
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Il - DISPLACEMENT AND STRESS FIELDS DUE TO A
DISLOCATION OF EDGE AVERAGE CHARACTER

I1-1. Plastic distortion

We consider a dislocation at the origin with Busyeector 0.b0) lying

indefinitely in the*3 ™ direction and spreading in th&”3 ™ plane in the form
of a Fourier series

&= (& sinkxg + 3, COSK %)

n : (1)

Here N is a positive integern a wave number andn and 9 are
amplitudes. We assumé to be small and express the plastic distortion
Bi®) 1o first order irf : this gives

Bia(X) =b3(x)H (x2) ~b&S(x,)3(x,) @)

and the other components gi (X) are zero, wher® andH are the Dirac
delta function and the Heaviside step functionpeesively. Here, the first
term is due to the straight edge dislocation. Téreesponding displacement
is known [12]. We shall therefore concentrate ore teecond term

*&
denoteag12 . Its Fourier form may be written as

B5(=Y i ]2T(ﬂf;"(kl’kziksn)+/3;25”(k11k21k3n))

ko= co“an

x ei (koXq +KoXo +KgnX3) dk,dk,

3)
where
X (-~ bé&, SinkXs3(%) (%) )dxdx, (4)
and
P I'[/Kn 1 [ )
2% =n ~iK3nAnX3 i (kg tkoXa)
Bi2" (kg K, Kan) o _[ e dxg 272 _[ je
-7l K, —00 —00
% (~ b3, CosKXa0(%)(%;) Jdx A : (5)

P. N. B. ANONGBA



Rev. Ivoir. Sci. Technol., 14 (2009) 55 — 86 61

7*€n 7*5n
Ki and X2 are real and%n is a natural number'[.?12 and Bz are non zero
only when =%l and equal to *P6n/2@M° gng —bd, /1227

*{ -
respectively. The Fourier form cﬁlZ ) may be arranged to read

Igig(y() =— 2(21:;7)2 Z I J (Znei(k1X1+k2X2‘KnX3) + Znei(klxl+k2X2+K”X3))dkldkz
no (6)

where % =% *1dn angZn =0 ~idn,
[I-2 . Displacement and stress fields

The displacemen't'm()?) (m=1, 2, 3) due to a plastic distortion of the form
N - .

ﬁij (%) _'Bij (k) e where k = (kg Kz, k3) and X~ (X1, %2, %) has been obtained
by Mura [13] to be

Um(R) = =ik LK) B (K) €' @
For isotropic material,
Om(4 + Zlu)kz — kkm(A + 1)

H(A +2p)k? (8)

2 12 2 2
where K™ =kl +kz +k3 g
Ciji =A%0ji + OO + Ly

L(K) =

9)
% being the Kronecker delta ardand # are Lamé constants. According to
@), U= —kiCuzlmB20) € 16 By i iven a2 €% 0 e
present case howevef2 is given by (6). The linear theory of elasticity

allows for the superposition of solutions, so ttie corresponding solution
may be written as
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U (%) =~ >, I_[ (ikllelzlek(E')ZneiE'X

2(271)2

~iky Ckl21|-mk(|z)2ne”6<}jk1dk2 , (10)

in which K'=(ki=kiky =k kg ==K7) 4nqk =(kiKo.ks =K0) \with (8) and
(9), we may arrange (10) to read

_ b ) 0
ué (%) = ) Zn:(fn Sink Xz + J, COSK,X3) P
$|
0(x,3p +%0y) " (11)
and
b 0 0
‘)=-— sin + &, COSK, I,
uz (X) Al V)Z (5n INKRX3 Xs) Xy~ o " 12)
where

elnrie)digdi, = Ko[kyr]
: (13)

the subscript taking the values 1 or 2 in (11); the ternﬂ i‘his an operator

2 _ 2 2
that acts on the factor withn: "~ =X *%2 KilXl s thenth-order modified

'n 27T_-[°_Lk +k2+/(

Bessel function usually so denoted a‘%idis the Kronecker delta. Finally, the
total displacement takes the form:

b
4rrl-v) Zn:

—WKO[Knr]{(dl 2)[2v 1—2‘2}6} 1[KnrlJ
r

0
5i1+5|2+5is(37
3

Kn (X15i2 +X0 + X1X25|3)
r

u; (X)zuio(5|1+5|2)+ Ay

. (14)
subscripti= 1, 2 and 3% =¢nSiNKnXs + 0, COSK X3 the term idlis an

0
operator that acts cﬁm; Vis Poisson’s ratio is the displacement due to a
straight edge dislocation:
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b(2v -1) |n(r2) b X

Orgy — _ el
ur (%) 8rm(l-v) 4r(l-v) r?
ug(x) = —than'l(xlj __ b —Xl)z(z

T Xo | 4m-v) r . 15]

The stress field can be obtained by diffesdimg the displacement. We
find:

Cx X AXPO .+ X250
flzzzknﬁh[/({—(cﬁlwizﬁ 04 e '2)+2v5i3}Ko[Knr]
n

;i (X) = 0 (R) +

1 8(X2 3, + X320,

i _2(5|1+5i2)+4V5i3+Kr§(X12(5i1_5|3)+X§(5i2_a-i3))+ 0 |1r2 : IZ)}KlJ
5 S AxZX5

71,(%) = (%) +CZKnA{Kn|:_V + r14 2 :|KO[Knr]

n

2,22 2.2
K2XEX
T TL L L PP
1U%n
" 2 4

X0 + X0 K (X2, + X200
013(7():(: 10j2 X leKnaAq[_ n(X{0j1+%50;5) Kolkor]
r n OX3
2(X20:4 + X230+ ,)
+[u(5j1+5j2)— ! '1r2 27027 1K [k
, (16)

where subscripts and I take the values (1, 2 and 3) and (1 and 2)

0
respectively,C = #0/2710=V) anq i s the stress due to the straight edge

dislocation:

2_ 2
0 oy — ~ X2 (X —X3)
O75(X) =C =2 14 2

2 2/_ _
(,i?(x)zcrx%(xl(5.1+6.z)+§2< 6.1+36.2)+2,,5igj

' Ji=1,2and3.  (17)
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(X) =0

a? i
Note that™ 13 (!=1and 2).

We indicate here a useful observation. From eqgunst{@4) and (16), those
due to a dislocation with the forn§ =¢$nSiNKnX3+0,COKnXs may pe

obtained by removing the symbgl (in (14) and (16)). Conversely from the
knowledge of the elastic fields due to a dislogatievith the simple

form¢ = $nSINKnXs \ve arrive at those corresponding to a dislocatiith the
more general form (1), simply by addin§ to the fields and writing
$nSINK X3 + 0, COSK X3 instead of$nSINKnX3 gnd Xn(én COSKLX3 — 3, SINKX3)

instead of(n¢n COSKnXg |

Il — DISPLACEMENT AND STRESS FIELDS DUE TO A
DISLOCATION OF SCREW AVERAGE CHARACTER

We consider a dislocation with Burgers vectdPO.D) lying in the

%3~ direction and spreading in tH&*s ~ plane in the Fourier series form (1).
The only non-zero component of the plastic distoris written to first order
in <:

Bis(X) =b3(x)H (%;) ~béS(%) (%) (18)
that is identical to (2). Here, the first term isedto the straight screw

dislocation. The corresponding displacement is kmasee for instance Mura

*&
[13]. The Fourier form of the second term is idealtito that (6) oFlZ . To
get the total displacement field, we proceed eyaasl for the dislocation of
edge average character (Section 2). The result is

_ ~ b 0
Ui (%) =u’(X)J5 +m§ KX O3 +(3y +5i2)67

3
x(((l_z‘/)dl +Kn5|3)Ko[Knr] + 0o Xsz) ~A% Kl[/(nr]j

Ay

(19

0
U3 is the displacement due to a straight screw disioa [13]:
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ug (%) = 221 tan‘l();ij
| (20)

The stress field can be obtained by differentiatimgdisplacement. We get:

2 2
Ojj (7<):CX1(51 r5|2 +5|3j2"( aph{ { Xla_iltxza_iz +5i3:|KO[Knr]
X3

_ 2 _ 2
+|:( 5il+5izg(xl XZ)_2V6|2_r26|3i|K1[Knr]J

r

2

2
0'12(X) CXZZ n a':z{ KrX1 KO[Knr]+|:V_2r)§Li|K1[Knr]]

K| K (X2 +Ux2) 3y + (L—V) X X0
J3(X) J]S(X)+CZA“| [ ( 1 2 Jlr 172 J2) O[Knr]
1- +2 0
+[‘K§(X12511+X1X2512) ( V)(( er)fjl % J2)]K1[an]J
. (21)
o9
! is the stress due to a straight screw dislocation:
o X105 = %50
q%(X):éj;;( 1%i2 : 2 IlJ -
r , 1=1and 2. (22)

0/g\ — . 0 _
Note that%i ®) =0 (i=1, 2 and 3) andi2=0.

IV - ANALYSIS OF THE NON-PLANAR CRACK
IV-1. The model

The dislocations with edge (Section 2) and screwciiSn 3) average
characters are now considered to be continuoustyilalited over the interval

%1 =72 to @ (the particular case in which the dislocationsehawsinusoidal
shape may serve here to illustrgteigure 3). The medium is assumed to be

P. N. B. ANONGBA



66 Rev. lvoir. Sci. Technol., 14 (2009) 55 — 86

a
infinite isotropic and elastic and subjected tofemn applied tensiorf’22

and shea”z at infinity. The dislocation distribution functioRi () (i =1
for the edges ant=2 for the screws) gives the number of dislocatibris a

small interval ™ about®t asPi ()% pislocations 1 and 2 have a Burgers

vector @00 g (00.0) respectively and to anyone located*a@a running

point P =0(4.¢(%).X3) (¢ peing given by (1)) and corresponding line sense

F— 2
0= W 1+(0810%)7) (00700 40 associated. We are concerned with the

problem of finding the equilibrium distributions tfe dislocations under the
combined action of their mutual repulsions andftree exerted on them by

a a
922 and’23. We shall derive the equilibrium relations whicke given by the
condition that each of the infinitesimal dislocasois acted on by zero total

force alond®. We stress here that the present analysis clodigws
previous works representing a crack as a continaowagy of dislocations by
Bilby et al. [14] and Bilby and Eshelby [15].

dr®

Consider a dislocation 1 located %t in Figure 3. The force in the

%~ direction exerted on it at an arbitrary pofitby the dislocations 1 and 2,

located in a small interva?'x1 about, is obtained from the Peach and
Koehler [16] formula to be

2 . ) ' .
dFl(l) = bZ(g'gZ)IS - G'S%tz)Di (Xl)dx.l.
2 (23)

(i) (W . .
where 922 and 923 (! =1 and 2) are the stresses due to a dislochtimr®

and Y (j = 2 and 3) are the componentsFabf the dislocation line sende
The distribution produces the force

a

2 . . , .
FO =53 [ (08t - ot oy ()%
i=1-a (24)

The condition that the total force Bt be zero is evidently

a
05— OS54ty 113+, _ja(agz) - Ugeztz /tS)Di (x)dx =0

E (25)
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Figure 3: A wavy crack with a sinusoidal front, extendingnir’® = 2 to a

, Subjected to uniforrﬁ‘2512 and 9 23 at infinity. The crack fluctuates
about a mean plane, which is illugtdh with small amplitude (say
roughly of the order of4").

Similarly the condition that the total force in tffe” direction be zero @ on
a dislocation 2 is

03,45 | (08 - 08, 1,01 ()% =0
i=l-a (26)

(25) and (26) are integral equations that provigeedaquilibrium distributions

D1 and P2 of the dislocations. (25) may be arranged in teBht form: first

an expression fof’gS is extracted from (26); this formula is then imnced
into (25) to obtain a new relation. The pair tovgoay be written as

2 a
03+ 2 ] 08 -0t 1192 o () =0
1=1—-a
2 a
o+ | (agg —a§'§t2/t3)D (%)dx =0
i=l-a (27)

P. N. B. ANONGBA



68 Rev. lvoir. Sci. Technol., 14 (2009) 55 — 86

IV-2. Dislocation distributions

Assume first that the dislocations are straightaperto the *3 ~ direction.

We thus have a planar crack in tf#&3 ~ plane, extending fromf? =2 to a,

0 0=, =
under mixed mode I+l loading. Under such condiglg =0, 923 =922 =0

@ - —x (2 = —x
03 =Ci% X 2 =Calx =% (see Sections 2 and 3) where

C]_ = /,[b/27T(1—V) and C2 = iUb/ZIT, (27) becomes

a '
D .
o, +C, | P g =g
—a Xl - Xl

a '
0'23 + C2 J- DZ(XlT) dXi =0
—aXg— X (28)

where the Cauchy principal values of the integiaais to be taken. The
solution is well known [15]:

a

922 X _pO
D1(x) €, az—xlz =Dy (%)
033 X1

= Déz) (%)

D,(x)=—-23 2
R R . (29)

@
0 corresponds to the distribution of straight edgeser pure mode |

@
loading and™0" to straight screws under pure mode Ill. The cowadmng
relative displacements of the crack faces, in‘th@nd 3 directions, are:

@ (%) = (05b 1C;) (% - x2)*?

& () = (031 7€)% - ) (30)

Thus it appears than) is unbounded att=*2 and the “8) curve is
vertical at these end points.

We now turn to the dislocations with shape d&pn (1). To solve (27) we
choose for convenience on the average fracture plane. This means that

P=04.0.%3) where*s satisfies the equatiéi¥®® =0, Consequently, with the
help of the dislocation stress fields in Sectiomrl 3, we may write the
various stresses appearing in (27) as
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2 C
o= 2. of=2 of= %
X=X X =% X =%
_ A& (%e )/ % . .
o (%) = vcl[iS)XW 3 koA, 08) /0% 3G - X RilK % - X, u}
1~ M n

1-v X =X n

o@x)=1"% cz(a‘f(x"*)’ 05 43 ko0 (X3) %R | X0 — X, uJ

20 /0
033 (%) = V( i(xf)x E +ZK 0P, (x3)/ 03
1 1

[ 2sgn(y — ) RAn | X =X [1+ K | %0 = % | Kol&p [ % =% |1D
(31)

where S9Nk =%) =[x =% /04 =%) ang RilX js the bounded part of the
modified Bessel function of first order  KalA.
K1[Kn | X~ X:;_ |] =1/Kn |X1 - X:i_ | +R1[Kn | X~ X:;. |] (27) becomes

0%+, | 1_2V(‘3XE(_X§(3/6X3)2D(x)d>a+ G | (af(xs)’ ol1- 2 +X?(55(X3)/5X3) )
L 1

+2KnaA1<x;)/ax3fn(x1,x§;xi)JDAxi)dxi =0
n

o35 +1c, | [W 3 ka0 (65) 0% 5GNG X0 Rk | = xlule(xl)dxl
1 1 n

N C, J‘{l v+2(6{(x3)/6x3)

= +anaA1<x;)/axggn(xl,x;;xi)JDZ(xi)dxi=0
4 n

X — %
(32)
where
f 0. 560) = (L 20— 200606) 1 9%) sunte, — ) Rk 1% =%
K0 (06(%5)10%)° 1% =% | Kol Ky 1% = |1
0n (% 531 X) = 0£06) 0% - 250n66 ~ )Ry [k 1% = X, [
+Kn|X1_Xi|Ko[Kn|X1_Xi|]). (33)
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Note that 'n and 9n are bounded wheft tends tdt. (32) is a system of two
integral equations with Cauchy type singular kesnelThe numerical

resolution of this system with two unknowf® and P2 may be performed
in the same way as for a single equation with amenawn (Anongba [11];
Anongba and Vitek [17]). The solution reads

ac? N
Dy(%) = ~22 Dy(%) nz_laé”Tn(xl/a)
ac? N
D, (%) = =2 Dy(x) X al?T, (% /a)
C2 n=1 | Xl |< a. ’ (34)

_ [,2 _ 2
where Do(x) =1/ 77/a =g is the solution of the homogeneous equation

a

J /% ~x)Do(x)d% =0 | _y
-a , " are the Chebyshev polynomials of first kimdl,
and the coefficienté’r(1i)(i =1 and 2) are obtained numerically using (32) as
described by Anongba [11]. Corresponding relatiispldcements¥ (i =1
and 2) of the faces of the crack, in tffeand *s directions, are similarly

abo, N a®sinlncos(x /a))

)y
li:l n=1 n

alx) =

_ abo3, § a@ sinlncos(x /a))
71:2 n=1 n ’ | X |S a . (35)

& (%)

IV-3. Stresses about the crack front

When the equilibrium distributionSt and P2 of the dislocations have been

found (Section 4.2), the total stre€d due to the non-planar crack at any
point (4:%2:%a) ig

= =50 4 5@
gij =0jj" *0jj (36)
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a
5ij(n) (X, X, X3) = Jiﬁn)a + [ aiﬁr‘) (X = X, X9, X3) D, (X)) g .
a ("=1and 2); (37

()
here %1 (n= 1 or 2) is the stress field produced by a disiocaat the origin

(n)a
with Burgers vector@P0) o (00b) I
Da _

= g'a = a'a . . .
Zero excepla 22 22 and 23, We are interested in stress values in
the neighbourhood of the crack front @t 2.

Substitutingt =@*S 0<s<<a the stress’iis given by the following
formula:

, the applied stress, is equal to

2
Uéa)a

2 a ) . .
T (5%, %) =Y [ of (a+ 5=, %, %5) D (x) g
naa with@<<a;

this stress expression means that only those distos located about the
crack front in % ~interval 27 @
stress at™ =2 Sahead of the crack tip as tends to zero; any other
contribution will be negligible for a sufficientlgmall value ofs. We note
that this formula is precise with no place for asther kind of additional

will contribute significantly to the

. . . -1/2 ..
stress term. We restrict ourselves to singulariifethe types = only; this is
the singularity that comes into play in the studylanar cracks and gives a
well-defined value to the crack extension forceisltsufficient to identify

() v . i .
% "to the unbounded terms with(@*S=%) in the MacLaurin series

()
expansion of%l to first order with respect td2 (assuming2to be small).

Under such conditions the involved integrals are tfe type

IDn () (a+s=x)" which is calculated approximately taking frthe
straight edge and screw dislocation distributioogeasponding to a planar
crack (29). We get

). — ). 2

Tii (8, %2, %3) =H5i1+5i2 +2V5i3+(5|125|2+(1+v)5i3j)(2(3x§:|l<lo
3

1 o0& 1

+E(_5il+ (1_2V)5|2 _25'3)0X3 KICI)I J@@
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_ _ o0& 0 3-v azgzjl 0 1
TS Xor Xa) = Vo KO+ 14>~ 5, = 2 KO | =
S [""3 | { 21-1)" og ”'JVZ’TIS 01,=03=0 (38)

subscripti = 1, 2 and 3; agais, *2 and %8 are arbitrary,S=% "a<<2
(5>0) and *2 is small. K} =0%52:/ar gngKin =055/a7 gre stress intensity
factors for the planar crack in pure modes | andi2 = 913 = Ojs the value
taken by the considered stresses on suffacé .

IV-4. Energy considerations

In the following, an expression for the derivati@of the energy of the
system with respect to crack area is derived. Heives to discuss the
initiation of crack motion. We follow Anongba [1Hnd the procedure is
adapted from Bilby and Eshelby [15].

Allow the right-hand front of the non-planaack with shape (1) (use Fig.

3 to illustrate) to advance (say rigidly for singity) from % =2 toa+d,
but apply forces to the freshly formed surfaces pievent relative
displacement; the energy of the system is unalté¥esy allow these forces

to relax to zero so that the crack extends effetifroma to @+ The

work done by these forces corresponds to a deciafadee energy of the
system which we shall estimate (the energy of ystem consists of the
elastic energy of the medium and the energy ofdhding mechanism). The

elementOISZ dldx, (I runs parallel to the crack front) of the surfate ¢ (1)
ahead of the crack front, at a poiRt- 4% =¢:Xs) 'may be defined by
& =S \vhere ¥ is the unit vector perpendicular ts pointing to the

—1/ | 201 -
positive *2 ~direction. We obtairqs_ll 1+(0¢70x3)" (O, 65/6x3)dx1dll

The relevant components of the force acting dam are T2; s, in the

03jds;

%2~ direction and in the X8 " direction (the summation convention on

repeated subscripts applies) whg‘je are stresses ahead of the shorter crack;

F..ds Ay® = e A2
thus the energy change associated witfs (72195i/A8U" 12+ 03;dS, A0 /2),

where 8u” (i=1 and 2) are the differences in displacement actbes

lengthened crack, just behind its tip, in tfeeand *¢ directions. It becomes
now clear that, when the crack advances feoim@* % | the energy decrease
associated with a surface eleméh® is
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1a+da 1a+da
~E=" [ gydsau® +7 [ gy;ds;au@

2 3 2

1 1a+da B oF _ - o
N e I (Uzz_i 23)AU(1)+(023_i033)AU(2) dx i

a{ 2|2 3 6X3 aXS

1+ =
(6X3J

) (39)

Let G be the derivative of the energy of the system wapect to crack area.
G corresponds to the limiting value taken byE/dld as & decreases to

zero. Stressesl generally consist of terms that are either bounded

unbounded as® tends toa; only those stress terms that are singular may
contribute a non-zero value @; the bounded terms all contribute nothing.

~0)(q)
Using (38) and defining (9 (=1 and 2) as

5(i)(s)55|1K|0+5izK|(|)| 1

Jorr s (40)

we arrive at

G(Ry) = lim - cE/dlda

2 _ 2
= 1 1- v MK—V o] _1 1+ﬂ|\/|ﬁ 5675 G(gl)
JlJ, (08 10%,)? 1-v  0xg \0xg) 2\ 1-v  0x3) ox3

+[1_vaf+2[afj2+[ 3-v _wﬂga%]@éﬂ
M Ox; 1-v| dx 20-v) M 0x3 ) ox2
(41)

where

G0 = lim ;a[; [ J(I)Au(l)dxl]
- a , 1=1land 2, (42)

—_ a a
andM —023/022.

Expression (41) gives the value 6f at an arbitrary pointo(&Xz =¢.%s)
along the front of the non-planar crack with halidgtha. The calculation of

Au(i)depends on the way the extension of the right-Heomt of the crack
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from % =@ to a+d& is performed. When2u" is obtained from a
distribution of dislocations perpendicular to tfe-direction, we implicitly

assume a rigid crack-front displacement. In th819céu(i) may be obtained
from the solution of (32) modified to allow for tifi@ct that the crack extends

from —@ to @t & instead of from~@ to@. Approximate expressions for

(i .
Go ('=1 and 2) correspond to a planar distribution ofigttaedge and
screw dislocations. In that case, Bilby and Esh&lby have shown that

c¥ =k 1-v)/E=G,

2
G =K} "a+v)/E=G) (43)

where E is Young’'s modulus. Adopting approximation (43)dadefining

G(Ry) 25G(R) =G(R)/(Gs +C') e obtain
_ 2_m_ N2 a2
&) = 1 2(1_ M 0¢  B=y)M®-(A-v)° (0%
1+ (@c10x)? U L-v+MZ o 20-v)L-v+M?) 7 6

. 2MZ-v(1-v)? (asz_ G+VM 0 9%
1-v)(L-v +M?){ 0x 2(L-v +M?) " 0xg 9x3
@-v )\ 0% ( ) 0% 03 . (44)

For the planar crack with a straight front, therdase of the energy of the

system (%), divided by the surface eleméhéd, is defined as the crack
extension force per unit edge length of the cracktf(see, for example,
Bilby and Eshelby [15]). In the present study, walkrefer toG (41) as the

crack extension force per unit length of the cr&ckt. In Section 4.5 we

give a more detailed description®ffor one special crack.

IV-5. Segmented crack front

Here the crack front is segmented as illustratedigure 1 andB is taken as
origin. ¢ is then odd and?! =1a *+ /&) ~ periodical with respect td8 where
A and AB( Figure 1) are the projected length alofg of planar facets with

inclination angle®,and® at pointsA andB of the average fracture plan;e.
Is given over a wavelength as

P. N. B. ANONGBA



Rev. lvoir. Sci. Technol., 14 (2009) 55 — 86 75

& =tanggxg | X3 |€ A5 /2

= tang, (—x + A) X3U[Ag 12, Ag 12+ ] (45)

We next consider successively the normalized ceadkension force (44),

~ 24 _
~ <G, >= (1/2}) | G,dxg
now denote&V, average 0 and ultimately the condition
for an extremum of & >

G ona period reads

2M 2 —p(1-v)? ar?
A-v)1-v+M?) |5 |< Ag /2

~ 2WM
G,(P,) =co 1-———tangi +
V( O) %( 1—V+M2 Z:!

2M tang, | 2M? -y (1-1)?

=cosp| 1+ arf
%( 1-v+M?  (1-v)A-v+M?) wAJ % g 12, Ag 12+,

(46)

For given M and crack profilé¢A'(ﬂB), (46) provides the reduced crack

extension force at an arbitrary poiﬁl(a’ ¢.%3) on the segmented crack front.

G takes constant values on fac&tandB.

<Gy > may be written as

~ 2M 2M2 -y (-v)?
<GV >—VO _Vl 2 +V2 2
1-v+M I-v)A-v+M“)

(47)
where

Vo = (L/1+ £)(cosg, + £cosgg)

v, = (U/1+ €)(-singy + £sings)

V, = (1/1+ &) tang, (Sing, +Sings) (48)
and € =18/ Aa =tang, /tangs

We restrict ourselves to the condition forextremum for<Gv > with
respect td? by cancelling <G >/9%x we have from (47)
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- . ) . 2 _ —_N\2
0<8,> 130, =, -V, UM v 2M -y (1 v)2
1-v+M @l-v)@-v+M“) (49)

where
Vo =0V / 0, = 0f , | 0 (COSp, — cOSggs) — £, Singgy
v, =0V /0@ = -0, | 0gon (Singg +sings) — f, cosp
Vi, =0V, [ dggy = Of . | 0o, tang, (Singgy +sings)
+ f,. (2sing, +sing —sin® @)/ cos g (50)
and
fo=1l+e of,/0gy=~17/tang cos’ g, (51)

0<G, >/0¢ =0 |a5ds to finding the roots of a polynomial of ar@ein M;
this gives
% +\/|/2v'2 +(Vol =V )((1—|/)v' +2V. )
M = (L-v)-2 1 2V " Yok 0 2
L-V)vo +2v, . (52)

Equation (52) is the required solution. It leadsptusitive M values and
agrees with extremums observed %ﬁv > as a function dfA.

Figures4, 5 and 6 are plots &V(46) <G, > (47) and pointd?aM) (52)
for % =constant o, 5 gived, one can distinguish different behaviours as
a function of M. This description applies to affy. Consider

@ =mI257=70° 15 jllustrate. Figure 6 gives M in the

intervall®39%2 03993 ot M increases witt from 0.3022 =0y to
0.3992( D40o); these (@:M) correspond to a maximum larger than 1 for

<Gy>  when plotted again: this is the case for the

pair@ =2115M=038) = Figyre 5 Then, from  maximum

M =03992(#2 U40°)  Figure 6, M decreases with; these (#aM)

correspond to a minimum f5er>; this is the case for the
point(#a =5910°M =038) = Figyre 5 Outsidd?30%2 03993~ <G, >

decreases continuously withr for M <03022 (M =03 Figure 5, for
instance) and increases indefinitely witfe for M >03992 (M =05
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Figure 5): in the latter situation there is no maximuRigure 4 shows Cv
along the crack front for three differeldt (0.3, 0.38 and 0.5) corresponding

to values Ilocated Dbelow, inside and abové'o'3022 0.3993

with @a =7T1785023 5 @ =711257070°  Gyakes constant  different

values, given by Equation (46), in

Xs 1=Jg /2 dgl2l , JAg 12, Agl2+2,]

“interval and increases withM,

Figure4.

1.6

)

1.4

1.2

0.8 O.».. 8

0.6

0.4

0.2
-1 0 1 2 3 4 5 6 7 8

X3/ Ag

Figure 4 : Normalized crack extension for& (46) for the segmented crack

front as a function &8 (reduced b)/‘B defined inFigure 1). The

curves correspond¥b= 03, 038 and0.3: they take different constant

values in intervals Y% V2 gng /2 12+1/€

wheré =18 /Aa =tang,/tangs ¢A=7T/7.85’ G =11257 gy =1/3

In summary, for a giverfsthere exists a valudl, say M (given by (52)
when #=9), such that;
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«  WhenM >Miihere are?2values limited by zero (as discussed above)

. <G,>>1 ..
corresponding to ; under such conditions non-planar crack

motion is possible. A local maximum is observed the

<Gy > dependence offronly for moderatéM (Figure 5).

« WhenMs= Mt, <G><1 for any #A; non-planar crack propagation
is unexpected.

<G, 1>8 )% 05
: s
7’
4
/'
4
16 L
O“
d"""
14 e
H"-‘—
1.2 S -
—d"—" O 38
L Ot D S [ —— e e
—\,\ ------- —
0.8
0.6
M =03
™
0.4
0 10 20 30 40 50 60 70 80
@a(degreep

Figure 5: Reduced crack extension force averaged Buer Gy >(47), asa
function of the inclination ang% of crack-front segment A,
% =71257070°. y=1/3 M =03: the corresponding curve

decreases continuously%sincreasesM = 038: the associated
curve displays a local maximum (abayand a local minimum

(below 1) af values given by (52) (see aBigure 6, curve 71 /257),
M = 05: the corresponding curve increases continuousli .
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V - DISCUSSION
V-1. On the hypotheses and method of analysis inglpresent study

Expressions for the displacement and stress fietds dislocation of edge
average character (Section 2) are established #&dimear form with respect

to‘z(Z) of plastic distortion Pz (note that the exact relation is

£12(X) =bo00)H (X2 =€)y Relation (2) is valid under the conditién small
only, the shape of being arbitrary, with the meaning that there is no

2 2
restriction on its spatial derivativegf(/ 0% gngd“¢/ aXS, particularly). No
additional hypothesis is introduced (see Section i@licating that

displacement and stress fields (14) and (16) ase wahlid underé small
only. This condition applies to corresponding etaBelds of a dislocation of

screw average character (Section 3) since samar lioean with respect t§

(18) of plastic distortior?3is used.

From stresses due to dislocations, we obtain ssiedg stressedi (38)

about the crack front and crack extension fdéc@ll) per unit length of the
crack front. The calculation of these quantitiesimes integrals (see (42) for
example) that are executed approximately by usiagtie fields due to a
planar distribution of straight dislocations. Howevthese additional
hypotheses have no direct influence on the geooaétfactors (i.e. those

2 2
with ¢ and its spatial derivativeds /0% gngd“¢/ ax3) present in results (38),
(41) and (44). In short, the results of the prestundy are obtained under the

condition ¢ small only. There is no restriction on the spatiativatives of
3

The traction free boundary condition at an arbjtrapintP(1:%2 =¢. %)

‘Xl‘ < a’ of the faces of the crack reads

where %1 and /7 are total stress and compongpf unit vector normal to the
crack face aP respectively. We show below that our analysis éctlen 4
correctly reproduces (53). More precisely we sklatw that Equation (53) is
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equivalent to (25) wheh=2 and to (26) wher =3. Equation (53) gives,
wheni =2,

02+ Oa3)3l Y2 =0 (54)

y=1/[1+ (01 9%;)2 (0L-0&/dxs)

Equations (36) and (37):

(see Section 4.4);5ij is given by

a a
o 0 ' 2 '
Opp =03+ J.Jéz)DldX.L"' jaéz)Dzdﬁ

—a —a
)

a a
o 1) ' 2 '
Op3 =033+ J-aéia)DldX.L'i' IJ§3)D2d)&
-a -a

0.5
p—
M e R
"—’ ~§‘
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e e e i el T TN Ay 0y
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- ~ M,
o RN
"’ \.L
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/J \
s L —
, —H\
Kd

0.3f 1257 / S~

0.25 /
0.2/

nl2

0 10 20 30 40 50 60 70 80
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Figure 6 : Points (%a-M) (% =constant gq,,a1i0n (52)) for which G > (47)

is extremum when plotted agafffstas inFigure 5 withM = 038;
v =1/3; segmented crack front. The curves correspon®ts /2,
111257 and 71/6: in any of these curves, points before (from &g |
the maximum correspondﬁgv > maximum and larger than 1 and

points after the maximum¥& > minimum and smaller than 1
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Introducing above expressions in (54) and notireg 3 /9% = Y3/ V2 =12/t

(for ti_see Section 4.1) we recover Equation (25). SinyiléBB) yields (26)
when | =3, Equations (25) and (26) (summarized into (27® governing

a a
integral equations (they contain externally appbt®sses’22 and 923) that

provide equilibrium dislocation distribution8tand Pz, In Section 4.2, a
procedure to solve (27) has been proposed andapyate solutions (34) for

Diand D given. One further step is to confront our analysvith
experiments in order to check on the validity a# fhresent modelling (see
below).

V-2. Comparison with previous theoretical analyseand experiments

One may distinguish (arbitrarily) two types of deslinvolving the non-
planar character of loaded cracks. On the one thhntk are works providing
formulae for elastic quantities (stress, stress ensity factors,
displacement...) about the front of a crack thatnsrely non-planar, as the
present study does: Gao [6], Xu et al. [7], Baltl drarralde [9], Anongba
[11], Movchan et al. [8], among others. On the othand, there are works
interested in elastic quantities about the fronafinitially planar crack that
adopts over a short distance of further propagaten non-planar
configuration: the recent work of Lazarus et aQ][for instance.

Consider first type of studies by Gao [6], &ual. [7], Movchan et al. [8]
and Ball and Larralde [9]. These authors have clamed an infinite solid

with a non-planar crack whose surfaté ¢ (%:%s) (in our notation) depends

on both*and*3and may be viewed as a slight perturbation of agslaemi-
infinite straight edge crack; we stress that inwwk by Ball and Larralde

[9], ¢=<0%) depends on*sonly. In all these studies bothand its spatial

derivatives ¢ /%1 and® /s are taken small and linear expressions of SIF
are given. These results have a narrow applicafictually these apply to a
crack that propagates essentially under mode lingablut whose front, for
various possible reasons, suffers a slight pertimbalndeed, when a mode

Il loading (in addition to mode 1) is applied tknar crack located iff*s,
the subsequent fracture propagation path depanis 3 (Erdogan and Sih
[18], Radon et al. [19]) and conditiohsmall is violated; for applied mode
[l and as mentioned earlier in Section ‘ils generally small buf$/9%s

measured in the crack fror ~direction may be large (on facebs for
instanceFigure 1) even undeM small.

P. N. B. ANONGBA



82 Rev. lvoir. Sci. Technol., 14 (2009) 55 — 86

Let us assume (as in these earlier works) Baihd its spatial derivatives to
be small. Under such conditions only linear termsthe reduced crack
extension force (44) are considered to survivevaaadnay write

2M  0¢&

G(P,) 01— s
( 0) 1—I/+|V|2 ax3 . (55)

In Section 4.5, we have performed an averége> of G using (44). The
same procedure using (55) reduces the result taftiae planar crack when
the crack front has a segmented front (Section; 4iBYe it is assumed that

9¢/9%3 js small, this means thd®"% D% and 1@"% U pecause’s and

% have similar small magnitudé&,G > using (55) is virtually one. Hence to
discuss macroscopic crack properties, it is necgdsause more elaborate

expressions such as (44) valid under condftismall only (see Section 5.1).
One may justly be interested in a detailed comparisetween stress or SIF
formulae obtained in the present study and thoswetk in earlier works
(Gao [6]; Xu et al. [7]; Movchan et al. [8]; Balhd Larralde [9]). Actually
such a comparison is not straightforward because avack geometry
(Section 4.1) is very different from the one (men&d above) adopted in
these previous studies. Therefore our results>greated to be different from
theirs. Furthermore we have obtained formulae tierdtress about the crack
front from the stress fields due to dislocationsevetas earlier works used
perturbation methods associated with brittle frectmechanics. This leads to
different definitions and presentations of resultdowever a general
comparison can briefly be made along the followiimgs. Firstly we note

that stressed12and?13 (38) are zero on our crack front Ieadind<tb=0.
Our crack model predicts that there is no couptiayveen modes | and 1l on

the one hand and modes |1l and Il on the otheirieat order i . The non
existence of coupling between modes Ill and Il eso be reached in the
perturbation analysis of plane cracks by Gao [6} thakes use of crack-face
weight functions. Assuming the crack faces to laetion free (relation (10)

of Gao [6]), theSu expression (see (13) in Gao [6] for example) ineslv

=0 =0 =0
terms with stresses (in our notatidd), 933and’1iproduced in the
surrounding medium by a planar crack as well ag firet derivatives with

respect to™and”®. In our crack geometry (planar crack fsextending

from X~ "2t0@), it is easy to see (use (36)(37) applied to tamar crack
and (22)(17) for instance) that all these quargtiiad associated derivatives
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cancel on the®*s ~plane in pure mode IlI, leading o =0.Turning to a
different crack geometry, we observe that for theng@r semi-infinite crack

with a straight edge front912 =‘713=0(in our notation) at the crack tip on
the fracture plane in pure modes | and lll (seesthhealled Irwin near-field
solutions displayed by Lawn [5]). When the crack ngn-planar semi-

infinite,KII takes a non-zero value (see (36) in Ball and LderdP] and
(3.40) in Movchan et al. [8]). The discrepancy asnpared to our result
above may originate essentially from a differente&rnack geometries under
mode | loading. Secondly under pure mode | and Ibkdings,

theXi andX1 induced by the shape of the non-planar crack arefi(st

0
order) (1=v)OE1axKT gng A v =19/ IKny respectively (in conformity
with (55)). These agree in form with correspondiegults presented by Ball
and Larralde [9] (see their relations (36) and Y3f)d Movchan et al. [8]
(see their (3.40)); by “agree in form” we mean thegults given by these

authors are proportional to the derivatie! %% of the perturbation as in the
present work. We want to stress here that Lazarud. ¢10], in a similar

comparison, have found agreement between some eif thsults (their

relation (52)) and previous results of Ball andrhlte [9] (their (36)) and

Movchan et al. [8] (their (3.40)).

We turn to Lazarus et al. [10] which consider atiafty planar semi-infinite

straight edge crack (crack front in tfe-direction) that adopts a non-planar
configuration after fracture propagation over arshiistanced (in their

notation), the new crack surfacé =< 0%:9) (in our notation) being
X3 andd dependent. The only small parametedigor equivalently ); there

iS no restriction on the spatial derivatives <i)(as in the present study). A
question that can be posed is: under which comditican the approach of
these authors be used to express the stress fadst the front of a
macroscopic crack entirely non-planar? It appesideat that it is necessary
that 9be sufficiently large. They provide stress inten§dictors to first order
indand use the usual plane strain relation to estirttegecrack extension
forceG.

We now compare our analysis with experiments amst fiocus on the
situation where the average value of the reducadkcextension force is

larger than 1 and the crack-front inclination arfgleéakes moderate values
(i.e. ranging from zero to 50° approximately). Fr&®ction 4, it is seen that

this occurs wheM 20.183 for % =712 gng M 20302 for#s =77/257
Figures 5 and6, for example. Assuming that crack motion may oagben
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the average value of the normalized crack exterfsiae is larger than 1, our

analysis suggests that non-planar cracks with setgddront with% =77 12

are favoured at smalll. This is in full agreement with experiments (Somme
[1]; Cooke and Pollard [2]).
We also mention an apparently interesting propeftyhe model. Consider a

crack with segmented front and talle=71/257 o illustrateFigure 5; we
have indicated in Section 4.5 that for sufficiently large (M 204) the

average<® > increases continuously witda from the value 1 ¢~ ~0).

This suggests tha#fA may increase gradually as the crack extends. Hemev
it is clear that the crack model of the presendtiy construction, is unable

to describe quantitatively any change%f with crack length as depicted by
Sommer [1] for instance.
Several theoretical criteria have been proposeanimttempt to explain the

dependence of on the ratioM of the applied stresses [2]: these are based
on the crack-tip stress field of a planar crackjected to mixed mode [+l
loading. They all lead to the same equation (56)nfoderateM [2, 20]; a
simple explanation is that incipient cracks groanfrthe parent crack front at

twist anglé’s, from the original crack plane, for which they feufno shear
stresses;

qu:ltan'l( M ) (56)

2 1/2-v

Predicted angles of twist depend on Poisson’s tatand vary from O to 45°

for M ranging from 0 to infinity. Unfortunately, as caa been fronFigure
2, measured angles fall markedly below theoreticadigtion (56). We have

also plotted orFigure 2 the points(@a:M) (% =constant gq,ati0n (52)) for

which <Cv>(47) is maximum and larger than 1: curve (2) cquoesls to

% =712 and curve (3) t#B =774, These additional curves, provided by the

present study, fall inside experimental points fooderateM (M <05
approximately). For largevl values, as mentioned earlier (Section 4.5), there

is no local maximum o ® >when plotted againg2(M = 05in Figure 5
for example) and a different criterion is requirédis important to mention
that, for the experimental points givenkigure 2, we have no information

about correspondirff. A detailed comparison with experiments, with the
aim of improving existing models, should take falicount of the whole
observed shape of the crack front.
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VI - CONCLUDING REMARKS

A model of non-planar crack of finite length unaeixed mode I+l11l
loading, fluctuating about an average fractdt& ~plane, has been

investigated. The crack front has an arbitrary qubcal shape‘( (%)
spreading in a plane perpendicular to the crackpagation

%~ direction. We have established expressions for tbéh stress
about the crack front (38) and the crack exten$owoe G per unit

length of the crack front (41) (44). We have averh@ over "3 for
one special crack with a segmented front and aeshedal conditions
linking applied stress to crack-front profile undeinich the average
crack extension forc& G> is maximum and larger than the value
corresponding to that of the planar crack underechimnode [+lIl.
These conditions conform to experimental situationsvhich non-
planar cracks are favourably observed.

The crack is macroscopic in our modelling (Sectdah) since it runs

indefinitely in the %3 " direction. This is a well-formed crack with
length 22 roughly of the order of 1 mm in ordinary laborator

experiments. In the*1*2 “plane, the crack is surrounded by an
infinite medium under mixed mode I+lll with loadismgapplied at
infinity. In this geometry, there is apparently reason for the non-

planar crack to depend 8n Thus the reduced crack extension force
(44) remains practically unchanged when in addiboe assumes the
crack front to depend on crack length. This is beeahe additional
stresses that come into play in the calculatiothefcrack extension

force, 912 and 013(38), are zero in both cases (crack front being onl

%s or both “.and”s dependent); also the other stre$&8and?23 (38)
remain unchanged in form. Only when applied mod®dding (in
addition) is assumed on our crack model will thackrlength play a
clear role in the fracture properties of the cracgelid.

The present modelling assumes the sh‘fmm‘ the crack front to be
independent of crack length. It may be argued thigtis a serious
limitation. However the present work deserves abersition for a
number of reasons. First the method used to gipeessions for the
stress about the non-planar crack front and craeénsion force is
different from those available in the literaturemiakes use of explicit
expressions of dislocation (say, sinusoidal edgecoew dislocation
(Anongba [12]) stress fields. Furthermore we claéimat this method
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of analysis is powerful when applied to the gendésading (mode
[+11+1l) of a non-planar crack with inclined (witlrespect to the
applied tension direction) average fracture surfatlis problem

requires that be both® and* dependent.
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