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ABSTRACT  
 

This paper investigates the mixed mode I+III loading of a non-planar crack that 

fluctuates about an average fracture −31xx plane in an infinitely extended 
isotropic elastic medium. The crack is a continuous array of long non-straight 
dislocations with infinitesimal Burgers vectors. The dislocations are 

perpendicular to the −1x direction of fracture propagation, have an arbitrary 

periodic small shape )( 3xξξ =  spreading in the −32xx plane and their portions 

may be arbitrarily inclined with respect to the −3x direction. The dislocation 
distribution contains two types of dislocation: dislocations 1 have an edge 
average character and respond to mode I loading; dislocations 2 have a screw 
average character and respond to mode III. The displacement and stress fields of 
two dislocations, with arbitrary shape and average character of edge or screw 
type, are first given. Expressions for the stress about the crack front and crack 
extension force G per unit length of the crack front are also given. Formula 
for >< G , a spatial average ofG , is provided for one special crack having a 
segmented front. Conditions under which >< G  is maximum conform to 
experimental measurements of crack-front twist angle versus applied stress.  
 

Keywords : Crack propagation and arrest, energy release rate, 
                     Dislocations, crack mechanics,  energy methods 
 
RÉSUMÉ 
 Une étude de la sollicitation en mode mixte I+III d’une fissure non 
plane utilisant des dislocations infinitésimales  
 
Cet article étudie la sollicitation, en mode mixte I+III, d’une fissure non 

plane qui fluctue autour d’un plan moyen 31xx dans un milieu élastique 
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isotrope infiniment étendu. La fissure est une rangée continue de longues 
dislocations avec des vecteurs de Burgers infinitésimaux. Les dislocations 

sont perpendiculaires à la direction 1x de propagation de la fracture, ont une 

forme arbitraire petite )( 3xξξ = étalée dans le plan 32xx , et leurs portions 

peuvent être arbitrairement inclinées par rapport à la direction 3x . La 
distribution contient deux types de dislocation : les dislocations de type 1 ont 
un caractère moyen coin et obéissent au mode I ; les dislocations de type 2 
ont un caractère moyen vis et obéissent au mode III. Les champs de 
déplacement et de contrainte de deux dislocations, avec une forme arbitraire 
et un caractère moyen coin ou vis, sont d’abord donnés. Des expressions pour 
la contrainte au niveau du front de fissure et la force d’extension G  de la 
fissure par unité de longueur du front de fissure sont également données. Une 
formule d’une moyenne spatiale deG , >< G , est établie dans le cas 
particulier d’une fissure non plane dont le front est segmenté. Des conditions 
pour lesquelles >< G est maximum sont conformes à des mesures 
expérimentales d’angles de torsion du front de fissure en fonction de la 
contrainte appliquée.  
 
Mots-clés : Propagation et arrêt de la fissure , force d’extension de la  
          fissure , dislocations ;  mécanique de la rupture , méthodes d’énergies   
 
 
I - INTRODUCTION 
 
The present study belongs to the mechanics of fracture in elastic solids. In 
what follows, the crack surface is assumed to fluctuate about an average 
plane because this is the kind of broken surface commonly observed (see 
below). On the scientific side, the conditions (crack geometries, loading 
modes …) under which such cracks develop are not well understood. Of 
particular interest are methods leading to expressions for the stress about the 
crack front and crack extension force. The values taken by these quantities, 
when compared with those corresponding to the planar crack, could then 
explain the occurrence of non-planar cracks in real materials. With an 
understanding of fracture development, we can build high performance 
engines in industry.  
In a material containing initially a planar crack, subsequent fracture under 
mixed mode I+III loading generally occurs on a non-planar surface that 
fluctuates about the initial crack plane. This observation is derived from 
numerous experiments performed under various different conditions. The 
broken surface exhibits the following features, (Figure 1) (in glass by 
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Sommer [1], polymethyl methacrylate (PMMA) by Cooke and Pollard [2], 
steel by Yates and Miller [3] and Hourlier and Pineau [4], among others):  

• For small %6/ 2223 ≈≡ aaM σσ , where
a
22σ and

a
23σ are the applied tension 

and shear respectively (Figure 1), facets B  are almost vertical 

( 2/πφ ≈B ) and facets A horizontal ( °≈ 3Aφ ); inclination angle Aφ  of 
facets A increases apparently with the extension of the crack 
(Sommer [1]; see also Lawn [5]).  

• Aφ increases from 3° to 45° approximately as M increases from zero 
to infinity [2- 4]. (Figure 2), reproduced from Cooke and Pollard [2], 
shows this trend.  

We stress that the shape )( 3xξξ = of the crack front may differ somewhat 

from the schematic one shown in Figure 1. ξ may deviate from straight lines 
for instance. In the present study, we shall present a general treatment by 

expandingξ into a Fourier series.  
The study of fracture in mixed mode I+III in solids requires a non-planar 
crack model that provides expressions for physical quantities pertinent to 
discuss crack propagation. For this purpose, a relevant quantity is the crack 
extension force per unit length of the crack front (or energy release rate)G . 
Since fracture proceeds through the motion of a macroscopic length of the 
crack front, it appears necessary to calculate an average >< G  and look for a 

relation betweenM , Aφ  and Bφ  that maximizes >< G . This relation may then 
be confronted with experiments as in Figure 2.  
A number of theoretical analyses devoted to non-planar cracks have been 
published. Works by Gao [6], Xu et al. [7] and Movchan et al. [8] refer to 
perturbation methods where effort is concentrated upon providing stress 
intensity factor (SIF) formulae that are given to first order in perturbation. 
SIF expressions are then related to G  by the usual plane strain relation. 
Under such conditions averagingG , as performed in the present study in 
Section 4, simply reduces the result to that of the planar crack; this evidently 
does not depend on the non-planar crack relevant parameters. Similar works 
providing first order SIF and involving asymptotic analysis for three-
dimensional elasticity problems have also been published (Ball and Larralde 
[9]; Lazarus et al. [10]). Ball and Larralde [9] were concerned with the 
stability of mode I cracks. Mixed mode loading was not attainable. Lazarus et 

al. [10] attempted to explain the increase of Aφ  with crack length as measured 
by Sommer [1]. They provided an approximate formula for G  at point A as 

defined in Figure 1 to second order in a parameter, denoted δγ dd /  by them, 

that is a measure of the derivative of Aφ  with respect to crack length. The 



Rev. Ivoir. Sci. Technol., 14 (2009) 55 – 86 
 

P. N. B. ANONGBA 

58 

obtained relation overestimates actual rotation rates by nearly 3 orders of 
magnitude [10]. However they obtained a quiet good value of the global 
rotation rate by a more complex criterion based on the maximization of 

>< G  and SIF expressions but only for three or four point bending 
experiments. In short, existing theoretical works on non-planar crack growth 
are seriously limited when applied to mixed mode I+III loading of materials; 
possible limitations are pointed out in the discussion, Section 5.  
We have previously considered a model of non-planar crack under mode I 
loading that fluctuates about an average plane [11]; the crack has a sinusoidal 
front perpendicular to the direction of fracture propagation and consists of a 
continuous distribution of sinusoidal edge dislocations [12]. The stress field 
of a sinusoidal edge dislocation leads to the stress about the crack front and 
crack extension force. It is then possible to compare our results with those 
obtained by other methods and experiments. This approach is maintained in 
the present work and extended to mixed mode I+III loading; the crack front, 
instead of being sinusoidal, can now be arbitrary. We provide expressions for 
stress and crack extension force G  along the crack front, perform an average 

>< G  ofG , establish a relation linkingM , Aφ  and Bφ  that maximizes >< G  
and finally confront the properties of the model with experiment. The crack 
consists of a continuous distribution of infinitely long type 1 and 2 
dislocations with edge and screw average characters. The dislocations are 

perpendicular to the −1x direction of fracture propagation. As for the crack 

front in Figure 1, the shape )( 3xξ  of the dislocations in the −32xx plane is 
periodical and fluctuates about an average fracture plane. Elastic fields of the 
two types of dislocation are given in Sections 2 and 3. We first express the 
plastic distortion (Section 2.1) and get the associated displacement field using 
a method developed by Mura [13] as explained in Section 2.2. In Section 4, 
our crack model and analysis are first presented; then one particular crack 
with a segmented front is considered. Section 5 confronts the properties of 
the model with previous works and experiments and concluding remarks are 

listed in Section 6. A Cartesian system ix  is used throughout 
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Figure 1 : Schematic shape of a crack front, in mixed mode I+III loading of a  

                solid, in a plane perpendicular to the −1x direction of fracture  

                propagation. The crack fluctuates about the −31xx plane and  

               consists of planar facets with inclination angle Aφ  and Bφ  at point  
               A and B of the average fracture plane, respectively. In this  

               geometry, the crack is subjected to an applied tension 
a
22σ  in the  

              −2x direction and shear 
a
23σ  in the −3x direction.  

 
 

 
 

Figure 2 : Crack-front twist angle Aφ (degrees) as a function of the ratio M  
                (shear/tension) of the applied stresses in polymethyl methacrylate  
                (symbol∗or+) and steel (o) as reproduced from Cooke and Pollard  
               [2]. Curve (1) corresponds to equation (56) in the text; curve (2) and  

              (3) correspond to (52) with 2/πφ =B  and 4/π  respectively, plots being  

              restricted to ),( AM φ  for which >< vG
~

 is maximum and larger than 1.  
             38.0=ν  (PMMA).  
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II - DISPLACEMENT AND STRESS FIELDS DUE TO A   
      DISLOCATION OF EDGE AVERAGE CHARACTER 
 
II-1. Plastic distortion  
 

We consider a dislocation at the origin with Burgers vector )0,,0( b  lying 

indefinitely in the −3x direction and spreading in the −32xx plane in the form 
of a Fourier series  
 

     
( )33 cossin xx nnnn

n

κδκξξ +=∑
.                                                                 (1) 

 

Here n  is a positive integer; nκ  a wave number and nξ  and nδ  are 

amplitudes. We assume ξ  to be small and express the plastic distortion 
)(* xij
rβ

 to first order inξ ; this gives  
 

     )()()()()( 2121
*
12 xxbxHxbx δξδδβ −=r

                                                         (2) 
 

and the other components of 
)(* xij
rβ

 are zero, where δ  and H are the Dirac 
delta function and the Heaviside step function, respectively. Here, the first 
term is due to the straight edge dislocation. The corresponding displacement 
is known [12]. We shall therefore concentrate on the second term 

denoted
ξβ *

12 . Its Fourier form may be written as  
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1k  and 2k  are real and nk3  is a natural number. 
nξβ *

12  and 
nδβ *

12  are non zero 

only when 13 ±=nk  and equal to 
2)2(2/ πξnib±  and 

2)2(2/ πδnb−  

respectively. The Fourier form of )(*
12 x

rξβ  may be arranged to read  
 

     

( ) 21
)()(

2
*
12

3221132211

)2(2
)( dkdkezez

b
x xxkxki

n
xxkxki

n
n

nn κκξ

π
β ++−+

∞

∞−

∞

∞−

+−= ∫∫∑
r

  (6) 
 

where nnn iz ξδ +=  and nnn iz ξδ −= . 
 
II-2 . Displacement and stress fields 
 

The displacement )(xum
r

(m = 1, 2, 3) due to a plastic distortion of the form 
xki

ijij ekx
rrrr

)()( ** ββ =
where ),,( 321 kkkk =

r

 and ),,( 321 xxxx =
r

 has been obtained 
by Mura [13] to be  
 

     
xki

ijmkkljilm ekkLcikxu
rrrrr

)()()( *β−=
.                                                            (7) 

 
For isotropic material,  
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                                                     (8) 

where 
2
3

2
2

2
1

2 kkkk ++=  and  

     ljkilikjjiklkljic δµδδµδδλδ ++=
,                                                                (9)  

 
ijδ

 being the Kronecker delta and λ  and µ  are Lamé constants. According to 

(7), 
xki

mkkllm ekkLcikxu
rrrrr

)()()( *
1221 β−=

 if 
*
12β  is given as

xkiek
rrr

)(*
12β

. In the 

present case however 
*
12β  is given by (6). The linear theory of elasticity 

allows for the superposition of solutions, so that the corresponding solution 
may be written as  
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the subscript i  taking  the values 1 or 2 in (11); the term in  is an operator 

that acts on the factor with nI ; 
2
2

2
1

2 xxr += . ][xKn  is the nth-order modified 

Bessel function usually so denoted and ijδ
 is the Kronecker delta. Finally, the 

total displacement takes the form:  
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subscript i = 1, 2 and 3; 33 cossin xxA nnnnn κδκξ += ; the term in is an 

operator that acts onnA ; ν is Poisson’s ratio. 
0
iu  is the displacement due to a 

straight edge dislocation: 
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     The stress field can be obtained by differentiating the displacement. We 
find: 
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where subscripts i  and j  take the values (1, 2 and 3) and (1 and 2) 

respectively, )1(2/ νπµ −= bC  and 
0
ijσ

 is the stress due to the straight edge 
dislocation: 
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Note that 
0)(0

3 =xj
rσ

 ( j = 1 and 2).  
 
We indicate here a useful observation. From equations (14) and (16), those 

due to a dislocation with the form 33 cossin xx nnnn κδκξξ +=  may be 

obtained by removing the symbol ∑  (in (14) and (16)). Conversely from the 
knowledge of the elastic fields due to a dislocation with the simple 

form 3sin xnn κξξ = , we arrive at those corresponding to a dislocation with the 

more general form (1), simply by adding ∑  to the fields and writing 
33 cossin xx nnnn κδκξ +  instead of 3sin xnn κξ  and )sincos( 33 xx nnnnn κδκξκ −  

instead of 3cos xnnn κξκ . 
 
 
III – DISPLACEMENT AND STRESS FIELDS DUE TO A  
        DISLOCATION OF SCREW AVERAGE CHARACTER 
 

We consider a dislocation with Burgers vector ),0,0( b  lying in the 
−3x direction and spreading in the −32xx plane in the Fourier series form (1). 

The only non-zero component of the plastic distortion is written to first order 

in ξ : 
 

)()()()()( 2121
*
13 xxbxHxbx δξδδβ −=r

                                                            (18) 
 
that is identical to (2). Here, the first term is due to the straight screw 
dislocation. The corresponding displacement is known, see for instance Mura 

[13]. The Fourier form of the second term is identical to that (6) of
ξβ *

12 . To 
get the total displacement field, we proceed exactly as for the dislocation of 
edge average character (Section 2). The result is  
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0
3u  is the displacement due to a straight screw dislocation [13]: 
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The stress field can be obtained by differentiating the displacement. We get: 
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0
ijσ

 is the stress due to a straight screw dislocation: 
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Note that 0)(0 =xii
rσ  ( i = 1, 2 and 3) and 00

12 =σ . 
 
 
IV - ANALYSIS OF THE NON-PLANAR CRACK 
 
IV-1. The model 
 
The dislocations with edge (Section 2) and screw (Section 3) average 
characters are now considered to be continuously distributed over the interval 

ax −=1  to a  (the particular case in which the dislocations have a sinusoidal 
shape may serve here to illustrate, (Figure 3). The medium is assumed to be 
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infinite isotropic and elastic and subjected to uniform applied tension 
a
22σ  

and shear 
a
23σ  at infinity. The dislocation distribution function )( 1xDi  ( 1=i  

for the edges and 2=i  for the screws) gives the number of dislocations i  in a 

small interval 1dx  about 1x  as 11)( dxxDi . Dislocations 1 and 2 have a Burgers 

vector )0,,0( b  and ),0,0( b  respectively and to anyone located at 1x  a running 

point )),(,( 331 xxxP ξ=  (ξ  being given by (1)) and corresponding line sense 

)1,/,0())/(1/1( 3
2

3 xxt ∂∂∂∂+= ξξ
r

 are associated. We are concerned with the 
problem of finding the equilibrium distributions of the dislocations under the 
combined action of their mutual repulsions and the force exerted on them by 

a
22σ  and

a
23σ . We shall derive the equilibrium relations which are given by the 

condition that each of the infinitesimal dislocations is acted on by zero total 

force along 1x . We stress here that the present analysis closely follows 
previous works representing a crack as a continuous array of dislocations by 
Bilby et al. [14] and Bilby and Eshelby [15]. 

Consider a dislocation 1 located at 1x  in Figure 3. The force 
)1(

1dF  in the 
−1x direction exerted on it at an arbitrary point P  by the dislocations 1 and 2, 

located in a small interval 
'
1dx  about

'
1x , is obtained from the Peach and 

Koehler [16] formula to be 

     
( ) '

1
'
12
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233

)(
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2
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)1(
1 )( dxxDttbdF i

ii

i
σσ −=

=
∑

                                                           (23) 
 

where 
)(

22
iσ  and 

)(
23
iσ  ( i  = 1 and 2) are the stresses due to a dislocation i  at 

'
1x  

and jt
 ( j = 2 and 3) are the components at P  of the dislocation line sense t

r

. 
The distribution produces the force  
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                                                         (24) 
 
The condition that the total force at P  be zero is evidently  
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1
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22

2

1
322322 =−+−

−=
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.                                   (25) 
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Figure 3 : A wavy crack with a sinusoidal front, extending from ax −=1  to a 

                , subjected to uniform  
a
22σ  and 

a
23σ  at infinity. The crack fluctuates  

              about a mean plane, which is illustrated, with small amplitude (say  
              roughly of the order of 1mµ ).  
 

Similarly the condition that the total force in the −1x direction be zero at P on 
a dislocation 2 is  
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1
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2

1
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ii
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.                                                    (26) 

 
(25) and (26) are integral equations that provide the equilibrium distributions 

1D  and 2D  of the dislocations. (25) may be arranged in a different form: first 

an expression for 
a
23σ  is extracted from (26); this formula is then introduced 

into (25) to obtain a new relation. The pair to solve may be written as  
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.                                                  (27) 
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IV-2. Dislocation distributions 
 

Assume first that the dislocations are straight parallel to the −3x direction. 

We thus have a planar crack in the −31xx plane, extending from ax −=1  to a, 

under mixed mode I+III loading. Under such conditions 02 =t , 0)2(
22

)1(
23 == σσ , 

'
111

)1(
22 / xxC −=σ , 

'
112

)2(
23 / xxC −=σ  (see Sections 2 and 3) where 

)1(2/1 νπµ −= bC  and πµ 2/2 bC = ; (27) becomes  
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223 =
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−
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xx

xD
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a
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                                                                         (28) 

where the Cauchy principal values of the integrals are to be taken. The 
solution is well known [15]:  
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π
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.                                                          (29) 
 

)1(
0D  corresponds to the distribution of straight edges under pure mode I 

loading and 
)2(

0D to straight screws under pure mode III. The corresponding 

relative displacements of the crack faces, in the2x  and 3x  directions, are:  
 

     
2/12

1
2

1221
)1(

0 ))(/()( xaCbx a −= πσφ , 

     
2/12

1
2

2231
)2(

0 ))(/()( xaCbx a −= πσφ .                                                            (30) 
 

Thus it appears that 
)(

0
iD  is unbounded at ax ±=1  and the 

)(
0
iφ  curve is 

vertical at these end points.  
     We now turn to the dislocations with shape Equation (1). To solve (27) we 
choose for convenience P on the average fracture plane. This means that 

),0,( *
31 xxP =  where 

*
3x  satisfies the equation 0)( *

3 =xξ . Consequently, with the 
help of the dislocation stress fields in Section 2 and 3, we may write the 
various stresses appearing in (27) as  
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where )/(||)sgn( '
11

'
11

'
11 xxxxxx −−=−  and ][1 xR  is the bounded part of the 

modified Bessel function of first order ][1 xK : 
|]|[||/1|]|[ '

111
'
11

'
111 xxRxxxxK nnn −+−=− κκκ . (27) becomes 
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where 
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Note that nf  and ng  are bounded when 
'
1x  tends to1x . (32) is a system of two 

integral equations with Cauchy type singular kernels. The numerical 

resolution of this system with two unknowns 1D  and 2D  may be performed 
in the same way as for a single equation with one unknown (Anongba [11]; 
Anongba and Vitek [17]). The solution reads  
 

     
)/()()( 1

)1(

1
10

1

22
11 axTxD

C

a
xD nn

N

n

a

ασ
=
∑=

,  

     
)/()()( 1

)2(

1
10

2

23
12 axTxD

C

a
xD nn

N

n

a

ασ
=
∑=

,    ax <|| 1 ;                                     (34) 
 

where 
2
1

2
10 /1)( xaxD −= π  is the solution of the homogeneous equation 
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'
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'
11 =−∫

−
dxxDxx

a

a , nT  are the Chebyshev polynomials of first kind, N 

and the coefficients 
)(i

nα ( 1=i  and 2) are obtained numerically using (32) as 

described by Anongba [11]. Corresponding relative displacements iφ  ( 1=i  

and 2) of the faces of the crack, in the 2x  and 3x  directions, are similarly  
 

     

( )
n

axn

C

ab
x n

N

n

a )/(cossin
)( 1

1)1(

11

22
11

−

=
∑= α

π
σφ

,  

      

( )
n

axn

C

ab
x n

N

n

a )/(cossin
)( 1

1)2(

12

23
12

−

=
∑= α

π
σφ

,  ax ≤|| 1 .                                 (35) 
 
IV-3 . Stresses about the crack front 
 

When the equilibrium distributions 1D  and 2D  of the dislocations have been 

found (Section 4.2), the total stress ijσ
due to the non-planar crack at any 

point ),,( 321 xxx  is 
 

     
)2()1(

ijijij σσσ +=
                                                                                      (36) 

 
where 
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here 
)(n

ijσ
(n =  1 or 2) is the stress field produced by a dislocation at the origin 

with Burgers vector )0,,0( b  or ),0,0( b . 
an

ij
)(σ

, the applied stress, is equal to 

zero except 
aa
22

)1(
22 σσ =   and 

aa
23

)2(
23 σσ = . We are interested in stress values in 

the neighbourhood of the crack front at ax =1 . 

Substituting sax +=1 , as<<<0 , the stress ijσ
is given by the following 

formula: 
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∑ σσ

δ with aa <<δ ;  
 
this stress expression means that only those dislocations located about the 

crack front in −1x interval 
],[ aaa δ−
will contribute significantly to the 

stress at sax +=1 ahead of the crack tip as s tends to zero; any other 
contribution will be negligible for a sufficiently small value of s. We note 
that this formula is precise with no place for any other kind of additional 

stress term. We restrict ourselves to singularities of the type 
2/1−s only; this is 

the singularity that comes into play in the study of planar cracks and gives a 
well-defined value to the crack extension force. It is sufficient to identify 

)(n
ijσ

to the unbounded terms with )'/(1 1xsa −+  in the MacLaurin series 

expansion of 
)(n

ijσ
to first order with respect to 2x (assuming2x to be small). 

Under such conditions the involved integrals are of the type 
')'/()'( 111 dxxsaxDn −+∫ which is calculated approximately taking fornD the 

straight edge and screw dislocation distributions corresponding to a planar 
crack (29). We get  
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subscript i = 1, 2 and 3; again s, 2x  and 3x  are arbitrary, aaxs <<−= 1  

( 0>s ) and 2x  is small. πσ aK a
I 22
0 = and πσ aK a

III 23
0 = are stress intensity 

factors for the planar crack in pure modes I and III. 01312 == σσ is the value 

taken by the considered stresses on surfaceξ=2x .  
 
IV-4. Energy considerations 
 
In the following, an expression for the derivative G of the energy of the 
system with respect to crack area is derived. This serves to discuss the 
initiation of crack motion. We follow Anongba [11] and the procedure is 
adapted from Bilby and Eshelby [15].     
     Allow the right-hand front of the non-planar crack with shape (1) (use Fig. 

3 to illustrate) to advance (say rigidly for simplicity) from ax =1  to aa δ+ , 
but apply forces to the freshly formed surfaces to prevent relative 
displacement; the energy of the system is unaltered. Now allow these forces 
to relax to zero so that the crack extends effectively from a to aa δ+ . The 
work done by these forces corresponds to a decrease of the energy of the 
system which we shall estimate (the energy of the system consists of the 
elastic energy of the medium and the energy of the loading mechanism). The 

element 1dldxds=  (l runs parallel to the crack front) of the surface ξ=2x (1) 

ahead of the crack front, at a point ),,( 321 xxxP ξ== , may be defined by 
dssd γrr =  where γ

r

 is the unit vector perpendicular to ds pointing to the 

positive −2x direction. We obtain dldxxxsd 13
2

3 )/,1,0()/(1/1 ∂−∂∂∂+= ξξr

. 

The relevant components of the force acting on ds are jj ds2σ
in the 

−2x direction and jj ds3σ
 in the −3x direction (the summation convention on 

repeated subscripts applies) where ijσ
 are stresses ahead of the shorter crack; 

thus the energy change associated with ds is 
)2/2/( )2(

3
)1(

2 udsuds jjjj ∆+∆ σσ
, 

where 
)(iu∆ ( 1=i  and 2) are the differences in displacement across the 

lengthened crack, just behind its tip, in the 2x  and 3x  directions. It becomes 
now clear that, when the crack advances from a to aa δ+ , the energy decrease 
associated with a surface element adlδ  is  
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Let G be the derivative of the energy of the system with respect to crack area. 
G corresponds to the limiting value taken by adlE δδ /−  as aδ  decreases to 

zero. Stresses ijσ
 generally consist of terms that are either bounded or 

unbounded as 1x  tends to a; only those stress terms that are singular may 
contribute a non-zero value to G; the bounded terms all contribute nothing. 

Using (38) and defining )()( siσ  ( 1=i  and 2) as  
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we arrive at  
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and
aaM 2223 /σσ= .  

Expression (41) gives the value of G at an arbitrary point ),,( 320 xxaP ξ=  
along the front of the non-planar crack with half length a. The calculation of 

)(iu∆ depends on the way the extension of the right-hand front of the crack 
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from ax =1  to aa δ+  is performed. When 
)(iu∆  is obtained from a 

distribution of dislocations perpendicular to the 1x -direction, we implicitly 

assume a rigid crack-front displacement. In that case, 
)(iu∆  may be obtained 

from the solution of (32) modified to allow for the fact that the crack extends 
from a−  to aa δ+  instead of from a−  toa . Approximate expressions for 

)(
0
iG ( 1=i  and 2) correspond to a planar distribution of straight edge and 

screw dislocations. In that case, Bilby and Eshelby [15] have shown that  
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where E is Young’s modulus. Adopting approximation (43) and defining 
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For the planar crack with a straight front, the decrease of the energy of the 
system ( Eδ− ), divided by the surface elementadlδ , is defined as the crack 
extension force per unit edge length of the crack front (see, for example, 
Bilby and Eshelby [15]). In the present study, we shall refer to G (41) as the 
crack extension force per unit length of the crack front. In Section 4.5 we 
give a more detailed description of G for one special crack.  
 
IV-5. Segmented crack front 
 
Here the crack front is segmented as illustrated in Figure 1 and B is taken as 

origin. ξ  is then odd and −+= )2( BA λλλ periodical with respect to 3x  where 
Aλ  and Bλ ( Figure 1) are the projected length along 3x  of planar facets with 

inclination anglesAφ and Bφ at points A and B of the average fracture plane. ξ  
is given over a wavelength as  
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     3tan xBφξ = ,                     2/|| 3 Bx λ≤  

        )(tan 3 λφ +−= xA ,          
]2/,2/[3 ABBx λλλ +∈
.                                  (45) 

 
We next consider successively the normalized crack extension force (44), 

now denoted vG
~

, average 
3

2

0

~
)2/1(

~
dxGG vv

λ
λ ∫>=<

and ultimately the condition 

for an extremum of >< vG
~

.  

     vG
~

 on a period reads  
 



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,  
[2/,2/]3 ABBx λλλ +∈
.        (46) 

 

For given M and crack profile ),( BA φφ , (46) provides the reduced crack 

extension force at an arbitrary point ),,( 30 xaP ξ  on the segmented crack front. 

vG
~

 takes constant values on facets A and B. 

     >< vG
~

 may be written as  
 

     )1)(1(

)1(2

1

2~
2

22

2210
M

M
v

M

M
vvGv +−−

−−+
+−

−>=<
νν

νν
ν
ν

                                        (47) 
 
where 
 

     )cos)(cos1/1(0 BAv φεφε ++= , 

     )sinsin)(1/1(1 BAv φεφε +−+= , 

     )sin(sintan)1/1(2 BAAv φφφε ++=                                                            (48) 
 

and BAAB φφλλε tan/tan/ == .  

     We restrict ourselves to the condition for an extremum for >< vG
~

 with 

respect to Aφ  by cancelling AvG φ∂><∂ /
~

. We have from (47)  
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where 

     ABAAA ffvv φφφφφ εε sin)cos(cos//0
'
0 −−∂∂=∂∂= , 

     ABAAA ffvv φφφφφ εε cos)sin(sin//1
'
1 −+∂−∂=∂∂= , 

     )sin(sintan//2
'
2 BAAAA fvv φφφφφ ε +∂∂=∂∂=  

                                                           AABAf φφφφε
23 cos/)sinsinsin2( −++    (50) 

and  

     εε += 1/1f ,   ABA ff φφφ εε
22 costan// −=∂∂ .                                          (51) 

 

0/
~ =∂><∂ AvG φ  leads to finding the roots of a polynomial of order 2 in M; 

this gives  

     

( )
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0
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2)1(

2)1()(
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.                                  (52) 
 
Equation (52) is the required solution. It leads to positive M values and 

agrees with extremums observed on >< vG
~

 as a function ofAφ .  

     Figures 4, 5 and 6 are plots of vG
~

(46), >< vG
~

(47) and points ),( MAφ (52) 

for constant=Bφ . For a givenBφ , one can distinguish different behaviours as 

a function of M. This description applies to anyBφ . Consider 
°== 7057.2/πφB  to illustrate. Figure 6 gives M in the 

interval
]3992.0,3022.0[
. First M increases with Aφ  from 0.3022 ( 0=Aφ ) to 

0.3992( °≅ 40Aφ ); these ),( MAφ  correspond to a maximum larger than 1 for 
>< vG

~
 when plotted againstAφ ; this is the case for the 

pair )38.0,15.21( =°= MAφ , Figure 5. Then, from maximum 
3992.0=M ( °≅ 40Aφ ), Figure 6, M decreases withAφ ; these ),( MAφ  

correspond to a minimum for >< vG
~

; this is the case for the 

point )38.0,10.59( =°= MAφ , Figure 5. Outside
]3992.0,3022.0[
, >< vG

~
 

decreases continuously with Aφ  for 3022.0<M  ( 3.0=M , Figure 5, for 

instance) and increases indefinitely with Aφ  for 3992.0>M  ( 5.0=M , 
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Figure 5): in the latter situation there is no maximum. Figure 4 shows vG
~

 
along the crack front for three different M (0.3, 0.38 and 0.5) corresponding 

to values located below, inside and above 
]3992.0,3022.0[
 

with °≅= 2385.7/πφA and °≅= 7057.2/πφB . vG
~

takes constant different 
values, given by Equation (46), in 

−3x interval
[2/,2/] BB λλ−
and

[2/,2/] ABB λλλ +
and increases with M, 

Figure 4.  
 

 

Figure 4 : Normalized crack extension force vG
~

(46) for the segmented crack  

              front as a function of 3x (reduced by Bλ defined in Figure 1). The  
             curves correspond to 3.0=M , 38.0  and 5.0 ; they take different constant 

             values in intervals 
[2/1,2/1] −
 and 

[/12/1,2/1] ε+
  

          where BAAB φφλλε tan/tan/ == . 85.7/πφ =A , 57.2/πφ =B  and 3/1=ν .  
 

In summary, for a given Bφ there exists a value M, say tM  (given by (52) 

when 0=Aφ ), such that: 
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• When tMM > there are Aφ values limited by zero (as discussed above) 

corresponding to 
1

~ >>< vG
; under such conditions non-planar crack 

motion is possible. A local maximum is observed in the 
>< vG

~
dependence on Aφ only for moderate M (Figure 5). 

• When tMM ≤ , 
1

~ ≤>< vG
 for any Aφ ; non-planar crack propagation 

is unexpected.  
 
 

 
 

Figure 5 : Reduced crack extension force averaged over3x , >< vG
~

(47), as a  

                function of the inclination angle Aφ  of crack-front segment A;  

               °≅= 7057.2/πφB ; 3/1=ν . 3.0=M : the corresponding curve  

               decreases continuously as Aφ  increases. 38.0=M : the associated  
               curve displays a local maximum (above 1) and a local minimum 

             (below 1) at Aφ  values given by (52) (see also Figure 6, curve 57.2/π ).  

              5.0=M : the corresponding curve increases continuously with Aφ .  
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V - DISCUSSION 
 

V-1. On the hypotheses and method of analysis in the present study 
 

Expressions for the displacement and stress fields of a dislocation of edge 
average character (Section 2) are established from a linear form with respect 

toξ (2) of plastic distortion 
*
12β  (note that the exact relation is 

)()()( 21
*
12 ξδβ −= xHxbx

r

). Relation (2) is valid under the condition ξ  small 

only, the shape of ξ being arbitrary, with the meaning that there is no 

restriction on its spatial derivatives ( 3/ x∂∂ξ and
2
3

2 / x∂∂ ξ , particularly). No 
additional hypothesis is introduced (see Section 2) indicating that 

displacement and stress fields (14) and (16) are also valid under ξ  small 
only. This condition applies to corresponding elastic fields of a dislocation of 

screw average character (Section 3) since same linear form with respect to ξ  

(18) of plastic distortion 
*
13β is used.  

 

From stresses due to dislocations, we obtain successively stresses ijσ
(38) 

about the crack front and crack extension force G (41) per unit length of the 
crack front. The calculation of these quantities involves integrals (see (42) for 
example) that are executed approximately by using elastic fields due to a 
planar distribution of straight dislocations. However these additional 
hypotheses have no direct influence on the geometrical factors (i.e. those 

with ξ and its spatial derivatives 3/ x∂∂ξ and
2
3

2 / x∂∂ ξ ) present in results (38), 
(41) and (44). In short, the results of the present study are obtained under the 

condition ξ  small only. There is no restriction on the spatial derivatives of 
ξ .  
 

The traction free boundary condition at an arbitrary point ),,( 321 xxxP ξ= , 
ax <1 , of the faces of the crack reads  

 

     
0=jijγσ

                                                                                                 (53) 
 

where ijσ
and jγ

are total stress and component j of unit vector normal to the 
crack face at P respectively. We show below that our analysis in Section 4 
correctly reproduces (53). More precisely we shall show that Equation (53) is 
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equivalent to (25) when 2=i  and to (26) when 3=i . Equation (53) gives, 
when 2=i , 
 

     0/ 232322 =+ γγσσ .                                                                                 (54) 
 

)/,1,0()/(1/1 3
2

3 xx ∂−∂∂∂+= ξξγr
 (see Section 4.4); ijσ

is given by 
Equations (36) and (37):  

     
∫∫

−−
++=

a

a

a

a

a dxDdxD '
12

)2(
22

'
11

)1(
222222 σσσσ
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−−
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a
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'
11

)1(
232323 σσσσ
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Figure 6 : Points ),( MAφ  ( constant=Bφ , Equation (52)) for which >< vG
~

(47)  

                 is extremum when plotted against Aφ  as in Figure 5 with 38.0=M ; 

               3/1=ν ; segmented crack front. The curves correspond to 2/πφ =B ,  
               57.2/π  and 6/π : in any of these curves, points before (from the left)  

              the maximum correspond to >< vG
~

 maximum and larger than 1 and  

              points after the maximum to >< vG
~

 minimum and smaller than 1. 
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Introducing above expressions in (54) and noting that 32233 /// ttx =−=∂∂ γγξ  

(for jt
see Section 4.1) we recover Equation (25). Similarly (53) yields (26) 

when 3=i . Equations (25) and (26) (summarized into (27)) are governing 

integral equations (they contain externally applied stresses 
a
22σ  and 

a
23σ ) that 

provide equilibrium dislocation distributions 1D and 2D . In Section 4.2, a 
procedure to solve (27) has been proposed and approximate solutions (34) for 

1D and 2D  given. One further step is to confront our analysis with 
experiments in order to check on the validity of the present modelling (see 
below). 
 
V-2. Comparison with previous theoretical analyses and experiments 
 
One may distinguish (arbitrarily) two types of studies involving the non-
planar character of loaded cracks. On the one hand, there are works providing 
formulae for elastic quantities (stress, stress intensity factors, 
displacement…) about the front of a crack that is entirely non-planar, as the 
present study does: Gao [6], Xu et al. [7], Ball and Larralde [9], Anongba 
[11], Movchan et al. [8], among others. On the other hand, there are works 
interested in elastic quantities about the front of an initially planar crack that 
adopts over a short distance of further propagation a non-planar 
configuration: the recent work of Lazarus et al. [10] for instance.  
     Consider first type of studies by Gao [6], Xu et al. [7], Movchan et al. [8] 
and Ball and Larralde [9]. These authors have considered an infinite solid 

with a non-planar crack whose surface ),( 31 xxξξ = (in our notation) depends 

on both 1x and 3x and may be viewed as a slight perturbation of a planar semi-
infinite straight edge crack; we stress that in the work by Ball and Larralde 

[9], )( 3xξξ = depends on 3x only. In all these studies both ξ and its spatial 

derivatives 1/ x∂∂ξ and 3/ x∂∂ξ are taken small and linear expressions of SIF 
are given. These results have a narrow application. Actually these apply to a 
crack that propagates essentially under mode I loading but whose front, for 
various possible reasons, suffers a slight perturbation. Indeed, when a mode 

II loading (in addition to mode I) is applied to a planar crack located in 31xx , 

the subsequent fracture propagation path departs from 31xx  (Erdogan and Sih 

[18], Radon et al. [19]) and condition ξ small is violated; for applied mode 

III and as mentioned earlier in Section 1, ξ is generally small but 3/ x∂∂ξ  

measured in the crack front −3x direction may be large (on facets B for 
instance, Figure 1) even under M small.  
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Let us assume (as in these earlier works) both ξ and its spatial derivatives to 
be small. Under such conditions only linear terms in the reduced crack 
extension force (44) are considered to survive and we may write 
 

     3
20

1

2
1)(

~

xM

M
PG

∂
∂

+−
−≅ ξ

ν
ν

.                                                                       (55) 
 

In Section 4.5, we have performed an average >< G
~

 of G
~

 using (44). The 
same procedure using (55) reduces the result to that of the planar crack when 
the crack front has a segmented front (Section 4.5); since it is assumed that 

3/ x∂∂ξ  is small, this means that AA φφ ≅tan  and BB φφ ≅tan ; because Aφ  and 
Bφ  have similar small magnitude, >< G

~
 using (55) is virtually one. Hence to 

discuss macroscopic crack properties, it is necessary to use more elaborate 

expressions such as (44) valid under conditionξ small only (see Section 5.1). 
One may justly be interested in a detailed comparison between stress or SIF 
formulae obtained in the present study and those derived in earlier works 
(Gao [6]; Xu et al. [7]; Movchan et al. [8]; Ball and Larralde [9]). Actually 
such a comparison is not straightforward because our crack geometry 
(Section 4.1) is very different from the one (mentioned above) adopted in 
these previous studies. Therefore our results are expected to be different from 
theirs. Furthermore we have obtained formulae for the stress about the crack 
front from the stress fields due to dislocations whereas earlier works used 
perturbation methods associated with brittle fracture mechanics. This leads to 
different definitions and presentations of results. However a general 
comparison can briefly be made along the following lines. Firstly we note 

that stresses 12σ and 13σ  (38) are zero on our crack front leading to 0=IIK . 
Our crack model predicts that there is no coupling between modes I and II on 

the one hand and modes III and II on the other to linear order inξ . The non 
existence of coupling between modes III and II can also be reached in the 
perturbation analysis of plane cracks by Gao [6] that makes use of crack-face 
weight functions. Assuming the crack faces to be traction free (relation (10) 

of Gao [6]), the IIK expression (see (13) in Gao [6] for example) involves 

terms with stresses (in our notation)
0

13σ ,
0
33σ and

0
11σ produced in the 

surrounding medium by a planar crack as well as their first derivatives with 

respect to 1x and 3x . In our crack geometry (planar crack in 31xx extending 

from ax −=1 toa ), it is easy to see (use (36)(37) applied to the planar crack 
and (22)(17) for instance) that all these quantities and associated derivatives 
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cancel on the −31xx plane in pure mode III, leading to 0=IIK .Turning to a 
different crack geometry, we observe that for the planar semi-infinite crack 

with a straight edge front, 01312 == σσ (in our notation) at the crack tip on 
the fracture plane in pure modes I and III (see the so called Irwin near-field 
solutions displayed by Lawn [5]). When the crack is non-planar semi-

infinite, IIK takes a non-zero value (see (36) in Ball and Larralde [9] and 
(3.40) in Movchan et al. [8]). The discrepancy as compared to our result 
above may originate essentially from a difference in crack geometries under 
mode I loading. Secondly under pure mode I and III loadings, 

the IIIK and IK induced by the shape of the non-planar crack are (to first 

order) 
0

3/)1( IKx∂∂− ξν  and 
0

3/)1/1( IIIKx∂∂− ξν
 respectively (in conformity 

with (55)). These agree in form with corresponding results presented by Ball 
and Larralde [9] (see their relations (36) and (37)) and Movchan et al. [8] 
(see their (3.40)); by “agree in form” we mean that results given by these 

authors are proportional to the derivative 3/ x∂∂ξ of the perturbation as in the 
present work. We want to stress here that Lazarus et al. [10], in a similar 
comparison, have found agreement between some of their results (their 
relation (52)) and previous results of Ball and Larralde [9] (their (36)) and 
Movchan et al. [8] (their (3.40)).  
We turn to Lazarus et al. [10] which consider an initially planar semi-infinite 

straight edge crack (crack front in the 3x -direction) that adopts a non-planar 
configuration after fracture propagation over a short distance δ  (in their 

notation), the new crack surface ),( 3 δξξ x=  (in our notation) being 
3x andδ dependent. The only small parameter is δ  (or equivalentlyξ ); there 

is no restriction on the spatial derivatives of ξ (as in the present study). A 
question that can be posed is: under which conditions can the approach of 
these authors be used to express the stress fields about the front of a 
macroscopic crack entirely non-planar? It appears evident that it is necessary 
that δ be sufficiently large. They provide stress intensity factors to first order 
inδ and use the usual plane strain relation to estimate the crack extension 
force G.  
We now compare our analysis with experiments and first focus on the 
situation where the average value of the reduced crack extension force is 

larger than 1 and the crack-front inclination angleAφ  takes moderate values 
(i.e. ranging from zero to 50° approximately). From Section 4, it is seen that 

this occurs when 183.0≥M  for 2/πφ =B  and 302.0≥M  for 57.2/πφ =B , 
Figures 5 and 6, for example. Assuming that crack motion may occur when 
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the average value of the normalized crack extension force is larger than 1, our 

analysis suggests that non-planar cracks with segmented front with 2/πφ ≈B  
are favoured at small M. This is in full agreement with experiments (Sommer 
[1]; Cooke and Pollard [2]).  
We also mention an apparently interesting property of the model. Consider a 

crack with segmented front and take 57.2/πφ =B  to illustrate Figure 5; we 
have indicated in Section 4.5 that for M sufficiently large ( 4.0≥M ), the 

average >< vG
~

 increases continuously with Aφ  from the value 1 ( 0=Aφ ). 

This suggests that Aφ  may increase gradually as the crack extends. However 
it is clear that the crack model of the present study, by construction, is unable 

to describe quantitatively any change of Aφ  with crack length as depicted by 
Sommer [1] for instance.  
Several theoretical criteria have been proposed in an attempt to explain the 

dependence of Aφ  on the ratio M of the applied stresses [2]: these are based 
on the crack-tip stress field of a planar crack subjected to mixed mode I+III 
loading. They all lead to the same equation (56) for moderate M [2, 20]; a 
simple explanation is that incipient cracks grow from the parent crack front at 

twist angle Aφ , from the original crack plane, for which they suffer no shear 
stresses;  
 

     









−
= −

ν
φ

2/1
tan

2
1 1 M

A
.                                                                              

Predicted angles of twist depend on Poisson’s ratio ν  and vary from 0 to 45° 
for M ranging from 0 to infinity. Unfortunately, as can be seen from Figure 
2, measured angles fall markedly below theoretical prediction (56). We have 

also plotted on Figure 2 the points ),( MAφ  ( constant=Bφ , Equation (52)) for 

which >< vG
~

(47) is maximum and larger than 1: curve (2) corresponds to 
2/πφ =B  and curve (3) to 4/πφ =B . These additional curves, provided by the 

present study, fall inside experimental points for moderate M ( 5.0≤M , 
approximately). For larger M values, as mentioned earlier (Section 4.5), there 

is no local maximum on >< vG
~

when plotted against Aφ ( 5.0=M in Figure 5 
for example) and a different criterion is required. It is important to mention 
that, for the experimental points given in Figure 2, we have no information 

about correspondingBφ . A detailed comparison with experiments, with the 
aim of improving existing models, should take full account of the whole 
observed shape of the crack front. 
 

(56) 
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VI - CONCLUDING REMARKS 
 

• A model of non-planar crack of finite length under mixed mode I+III 

loading, fluctuating about an average fracture −31xx plane, has been 

investigated. The crack front has an arbitrary periodical shape )( 3xξ  
spreading in a plane perpendicular to the crack propagation 

−1x direction. We have established expressions for both the stress 
about the crack front (38) and the crack extension force G per unit 

length of the crack front (41) (44). We have averaged G over 3x  for 
one special crack with a segmented front and established conditions 
linking applied stress to crack-front profile under which the average 
crack extension force >< G  is maximum and larger than the value 
corresponding to that of the planar crack under mixed mode I+III. 
These conditions conform to experimental situations in which non-
planar cracks are favourably observed.  

• The crack is macroscopic in our modelling (Section 4.1) since it runs 

indefinitely in the −3x direction. This is a well-formed crack with 
length a2  roughly of the order of 1 mm in ordinary laboratory 

experiments. In the −21xx plane, the crack is surrounded by an 
infinite medium under mixed mode I+III with loadings applied at 
infinity. In this geometry, there is apparently no reason for the non-

planar crack to depend on1x . Thus the reduced crack extension force 
(44) remains practically unchanged when in addition one assumes the 
crack front to depend on crack length. This is because the additional 
stresses that come into play in the calculation of the crack extension 

force, 12σ  and 13σ (38), are zero in both cases (crack front being only 

3x  or both 1x and 3x dependent); also the other stresses22σ and 23σ  (38) 
remain unchanged in form. Only when applied mode II loading (in 
addition) is assumed on our crack model will the crack length play a 
clear role in the fracture properties of the cracked solid.  

• The present modelling assumes the shape ξ  of the crack front to be 
independent of crack length. It may be argued that this is a serious 
limitation. However the present work deserves consideration for a 
number of reasons. First the method used to give expressions for the 
stress about the non-planar crack front and crack extension force is 
different from those available in the literature; it makes use of explicit 
expressions of dislocation (say, sinusoidal edge or screw dislocation 
(Anongba [12]) stress fields. Furthermore we claim that this method 
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of analysis is powerful when applied to the general loading (mode 
I+II+III) of a non-planar crack with inclined (with respect to the 
applied tension direction) average fracture surface. This problem 

requires that ξ  be both 1x  and 3x  dependent. 
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