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ABSTRACT  
 
This paper proposes a robust adaptive nonlinear controller to stabilize a wheeled 
mobile robot. The controller equations are obtained using a recursive 
backstepping design method. The robot model is divided into two parts: a state 
space model with intermediate control inputs and algebraic nonlinear equations 
that relate the true and the intermediate control inputs. The robot parameters are 
assumed unknown for the design. First, a suitable change of variable is applied 
to the initial robot dynamics to expose the inherent strict feedback structure of 
this model. Next, a three-step robust adaptive backstepping control design 
method is applied to find the intermediate control input expressions. Finally the 
true control inputs are obtained solving the nonlinear equations that relates 
intermediate and true control inputs, iteratively. A direct adaptive algorithm 
based on the projection method is used to update the controller parameters 
online. The main advantage of this adaptation method is that estimated 
parameters convergence is guaranteed and they remain inside predefined 
domains. The proposed control design method is tested in simulation. Results 
show good tracking performances when system parameters are perfectly known 
and when they are assumed unknown with large abrupt variations. 
 
Keywords  :  Mobile Robot, Robust Adaptive Control, Backstepping Design  
                       Method, Newton-Raphson Method, Projection Method. 
 
 
RÉSUMÉ 
 Un correcteur robuste adaptatif pour un robot mobile équipé de roues. 
 
Cet article propose un correcteur non linéaire robuste et adaptatif pour 
stabiliser un robot mobile équipé à roues. Les équations du correcteur sont 
obtenues en utilisant une méthode de conception récursive dite backstepping. 
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Le modèle du robot est divisé en deux parties : Une représentation dans 
l’espace d’état faisant intervenir des entrées de commande intermédiaires et 
une équation algébrique non linéaire qui relie les entrées de commande 
intermédiaires aux entrées exactes de commande du système. Les paramètres 
du robot sont supposés inconnus durant la phase de conception du correcteur. 
Dans un premier temps, un changement de variable approprié est appliqué au 
modèle initial du robot pour faire ressortir la structure interne du modèle. 
Dans un second temps, une méthode de conception robuste et adaptative en 
trois étapes est utilisée pour obtenir les expressions des entrées de commande 
intermédiaires. Enfin, les entrées exactes de commande du système sont 
obtenues en résolvant d’une manière itérative, les équations algébriques non 
linéaires qui relient les entrées de commande intermédiaires aux entrées 
exactes de commande. Un algorithme adaptatif direct basé sur la projection 
est utilisé pour mettre à jour en temps réel les paramètres du correcteur. Le 
principal avantage de cette méthode d’adaptation est que la convergence des 
paramètres estimés est garantie dans un domaine prédéfini. La méthode de 
conception proposée est évaluée en simulation. Les résultats montrent des 
bonnes performances de poursuite de trajectoires quand les paramètres du 
système commandé sont parfaitement connus et lorsqu’ils sont inconnus et 
sujettes à des grandes variations. 
 
Mots-clés  :  Robot mobile, commande robuste et adaptative, méthode de  
                     conception dite backstepping, méthode de newton-raphson,  
                    méthode par projection. 
 
 
I - INTRODUCTION 
 
The importance of autonomous robots for domestic and military application is 
now well established [1,2]. The number of recent contributions testifies the high 
level of research activities in this domain. In [3], a new control rule for 
determining vehicle linear and rotational velocities are presented. The design is 
based on the assumption that a ‘perfect velocity tracking’ is achieved. The 
reference [4] removes the previous assumption and proposes a control structure 
that makes possible the integration of a kinematic controller and neural network 
computed-torque controller. In [5], a µ-synthesis robust controller of a four-
wheel steering (4WS) vehicle is designed with the optimized weighting 
functions to attenuate the external disturbances while the yaw rate is chosen as 
the only feedback signal. The reference [6] studies robust steering and traction of 
four-wheel steering (4WS) vehicles with varying velocity, mass, moment of 
inertia, and road–tire interaction. A nonlinear input–output decoupling controller 
along with a robust control scheme is proposed. The H-infinity controller and 
observer gains are obtained by solving two new Riccati algebraic equations. In 
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most of the previous contributions, the mobile robot is represented either by 
kinematic equations or linearized model when dynamic equations are used. 
This paper introduces an innovative approach to address the mobile robot 
tracking controller design problem. The basic idea is to divide this difficult 
problem into two straightforward problems. This idea is indeed the main 
advantage of our design approach. It is motivated by the observation that much 
of the nonlinearities of the robot model appear into actuator equations. 
Therefore, a model based design methodology is proposed. The highly nonlinear 
model of the mobile robot is spitted into two parts: A state space model in which 
three intermediate control inputs are voluntarily introduced, and three nonlinear 
algebraic equations involving true and intermediate control inputs. First, an 
adaptive backstepping control design method [7] is employed to synthesize the 
intermediate input equations that solve the trajectory tracking problem. Next, the 
Newton-Raphson method [8] is used to solve nonlinear algebraic equations to 
obtain the true control inputs. A projection based adaptation method is proposed 
to update controller parameters when robot parameters change. Two scenarios 
are used to assess the controller performances. First, the robot parameters are 
assumed known therefore the adaptation algorithms are switched off. In the 
second case, robot parameters experiment large abrupt variations and the 
adaptation module along with the robust nonlinear terms are used to ensure good 
trajectory tracking performances. 
The paper is partitioned as follows. The mobile robot state space model is 
discussed in Section II. The design objective is presented in Section III. Section 
IV exposes the backstepping control design method used to obtain the 
intermediate input equations along with the algorithm used to compute the true 
control inputs. Controller parameter adaptation laws are proposed in the same 
section. Simulations are performed and the results are presented in Section V. 
Two different trajectories are used to evaluate the control tracking performances. 
The paper ends with a conclusion. 
 
 
II - FUNDAMENTAL CONCEPTS 
 
II-1. the wheeled mobile robot model 
 
The four wheeled autonomous vehicle studied in this paper is represented by 
the half vehicle model that is illustrated at Figure 1. The mobile robot motion 
can be represented by the following state space equations [9, 10]. 
x V cos( )= θ + β&         (1.a) 
y Vsin( )= θ + β&        (1.b) 
θ = ω&           (1.c) 
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x y
cos( ) sin( )

V U U
M M

β β= +&

       (1.d) 

x y
sin( ) cos( )

U U
M V M V

− β ββ = + − ω
⋅ ⋅

&

      (1.e) 
1

U
J ωω =&

        (1.f) 
 
where 

{ } { }f f f f f r r r r fU L A cos( ) F sin( ) L A cos( ) F sin( ) bω = δ + δ − δ + δ − ⋅ω
 (2.c) 

 
f f f f r r r r

xU A sin( ) F cos( ) A sin( ) F cos( ) B V cos( )= − δ + δ − δ + δ − ⋅ ⋅ β  (2.a) 
 

f f f f r r r r
yU A cos( ) F sin( ) A cos( ) F sin( ) B V sin( )= δ + δ + δ + δ − ⋅ ⋅ β

 (2.b) 
and 

f r
f f r r

f r
L L

A ( ) and  A ( )
V V

ω ω≈ µ δ −β − ≈ µ δ −β −
    (3) 

State variables x, y, θ ,V ,β  and ω  are the x-position, the y-position, the 
orientation, the longitudinal velocity of center of mass, the skidding .angle and 

the angular velocity of the centre of mass, respectively. 
fδ , 

rδ , 
fF  and 

rF  are 
the control inputs and they represent the front wheel steering angle, the rear 
wheel steering angle, front wheel traction force and rear wheel traction force, 

respectively. Parameters M , J , 
fL  and 

rL  are the mass of the vehicle, the 
moment of inertia about the centre of mass, the distance between the front wheel 
and the centre of mass and the distance between the rear wheel and the center of 

mass, respectively. B , b , fµ  and rµ  stand for linear and angular viscous ratios, 
Front and rear wheel lateral friction coefficients, respectively. It is important to 
mention that this model is composed of three relationships (1.a, 1.b and 1.c) 
referred to as the ‘kinematics’ and three equations (1.d, 1.e and 1.f) usually 
called the ‘dynamics’. 
 
II-2. design strategy and objective 
 

Our objective is to synthesize 
fδ , 

rδ , 
fF  and 

rF  such that position and 

orientation variables ( )x , y ,θ
 follow the desired trajectories 

( )ref ref refx , y ,θ
. The proposed design strategy consists in considering 
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( )x yU , U , Uω  that appears in equations (1) as intermediate control 
inputs, and in finding their equations to solve the trajectory tracking problem. 
Next, equation (2) will be used to solve online for the true control inputs 

( )f r f r, ,F ,Fδ δ
, iteratively. The Newton-Raphson method is suggested 

to solve the nonlinear equations. Integrators are voluntarily introduced into 
the control loop for practical consideration and to guarantee that steady state 
tracking errors will go to zero. To reveal the inherent strict feedback structure 
of the mobile robot model and to introduce these integrators into the control 
loop, the following new variables and change of variables are defined: 

x yV V cos( )  and  V Vsin( )= β = β
      (4) 

t

x ref
0
(x x )dΩ = − τ∫

, 

t

y ref
0
(y y )dΩ = − τ∫

 , 

t

ref
0
( )dθΩ = θ − θ τ∫

 (5) 
 
The mobile robot augmented state space model has the following form: 
 

x refx xΩ = −&
         (6.a) 

y refy yΩ = −&

        (6.b) 

refθΩ = θ − θ&
        (6.c) 

 

x yx cos( )V sin( )V= θ − θ&
       (7.a) 

x yy sin( )V cos( )V= θ + θ&
       (7.b) 

θ = ω&           (7.c) 
 

When nominal value of the unknown robot parameters ( M , J,B , b , fµ  and 

rµ ) are introduced into the dynamic parts, equations 1.d, 1.e and 1.f become: 

x xn y 1
1

V U V p (t)
M

= + ω +&

       (8.a) 

y yn x 2
1

V U V p (t)
M

= − ω +&

       (8.b) 

n 3
1

U p (t)
J ωω = +&

        (8.c) 

where xnU , ynU
 and nU ω  represent the nominal intermediate control inputs. 

Their expressions are identical to equations 2 when robot parameters are 
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substituted by their nominal values. Parameters 1p (t) , 2p (t)  and 3p (t)  
gather the terms that depend on unknown parameters. They are treated like 
disturbances in this work. 

f f r r
1p (t) A sin( ) A sin( ) Bcos( )V= −∆ δ − ∆ δ − ∆ β  

f f r r
2p (t) A cos( ) A cos( ) Bsin( )V= ∆ δ + ∆ δ − ∆ β  

f f f r r r
3p (t) A L cos( ) A L cos( ) b= ∆ δ − ∆ δ − ∆ ⋅ω  

where 
f r

f f r r
f r

L L
A ( ) ,  A ( )

V V

ω ω∆ ≈ ∆µ δ −β − ∆ ≈ ∆µ δ −β −
 

f f fn r r fn n- ,  - ,  B B-B∆µ = µ µ ∆µ = µ µ ∆ =  

Parameters nB , nb , fnµ  and rnµ  are nominal parameters of linear and 
angular viscous ratios, Front and rear wheel lateral friction coefficients, 

respectively. According to their expressions 1p (t) , 2p (t)  and 3p (t)  are 
obviously bounded. 
 
The block diagram representation of equations (6,7 and 8) is shown at 
Figure. 2. One can easily see that the augmented state space model is 
composed of three cascaded subsystems. The state variables of the first 
subsystem are the inputs of the second subsystem, and so on. This structure is 
refereed to as a strict feedback form. It is very suitable for the application of a 
backstepping control design method to obtain the controller equation. 
 

 
 

Figure 1  :  Geometrical parameters of the half vehicle model. 
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Figure 2  :  The intrinsic structure of the mobile robot model 
 
II-3. backstepping method for controller design 
 
A systematic application of a recursive backstepping method to the system 
represented by equations (6 to 8) leads to the control structure depicted at 

figure 3. During the design, robot parameters such as M , J ,B , b , fµ  and 
rµ are assumed unknown. One can note that the proposed controller is 

composed of 3 sub controllers. The xyθΩ
-controller is used to find the 

suitable value of the position and orientation state vector ( )x , y ,θ
 

denoted 
( )* * *x , y ,θ

 that steers ( )x y, , θΩ Ω Ω
 to zero. The xyθ -

controller is used to obtain the ‘ideal value’ for ( )x yV ,V , ω
 denoted 

( )* * *
x yV ,V , ω

 in order to drive ( )x , y ,θ
 to its ‘ideal 

value’
( )* * *x , y ,θ

. The last sub controller is the x yV V ω
-controller. It is 

used to find the intermediate control inputs equations in such a way that they 

steer the vector ( )x yV ,V , ω
 to its reference

( )* * *
x yV ,V , ω

. Sub 
controller equations are obtained as follows. First, we consider the sub-

system represented by the equations (6). If ( )x , y ,θ
 were a vector of 

control inputs, it should be selected equals to, 
*

ref 1 xx x k= − Ω         (9.a) 
*

ref 2 yy y k= − Ω
        (9.b) 
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*
ref 3k θθ = θ − Ω         (9.c) 

in order to drive ( )x y, , θΩ Ω Ω
 to zero. Equations (9) represent ‘ideal 

values’ or references of ( )x , y ,θ
. They are xyθΩ

-controller equations. 

However, ( )x , y ,θ
 is not the vector of control inputs but a vector of state 

variables. It is therefore used to introduce new variables that represent the 
errors between position and orientation variables and their references. 

*x x x= −%          (10.a) 
*y y y= −%          (10.b) 
*θ = θ − θ%          (10.c) 

Dynamics of ( )x y, , θΩ Ω Ω
 into the new coordinates have the following 

form, therefore: 

x 1 xk xΩ = − Ω +& %         (11.a) 

y 2 yk yΩ = − Ω +& %
        (11.b) 

3kθ θΩ = − Ω + θ%&
        (11.c) 

Next, references of ( )x yV ,V , ω
 will be selected to drive 

( )x , y ,θ%% %
to 

zero. Dynamics of 
( )x y θ%% %

 can be rewritten into the following form: 

x y ref 1 refx cos( )V sin( )V x k (x x )= θ − θ − + −&% &
    (12.a) 

x y ref 2 refy sin( )V cos( )V y k (y y )= θ + θ − + −&% &
    (12.b) 

ref 3 refk ( )θ = ω − θ + θ − θ&% &
       (12.c) 

If ( )x yV ,V , ω
 were the vector of control inputs, it should be selected 

equals to, 

{ } { }*
x ref 1 ref 1 4 x ref 1 ref 2 5 yV cos( ) x k x k x k x sin( ) y k y k y k y= θ + − − −Ω + θ + − − −Ω% %& % & %

  
         (13.a) 

{ } { }*
y ref 1 ref 1 4 x ref 1 ref 2 5 yV sin( ) x k x k x k x cos( ) y k y k y k y=− θ + − − −Ω + θ + − − −Ω% %& % & %

  
         (13.b) 

*
ref 3 ref 3 6k k k θω = θ + θ − θ − θ − Ω& % %

      (13.c) 
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in order to force 
( )x , y ,θ%% %

 to converge to zero. Since the vector 

( )x yV ,V , ω
 is not the input, it is used to introduce a new vector of state 

variables. 
*

x x xV V V= −%
         (14.a) 

*
y y yV V V= −%

         (14.b) 
*ω = ω− ω%          (14.c) 

Equations (12) into the new coordinates become: 

x y 4 xx cos( )V sin( )V k x= θ − θ − − Ω& % % %% %
      (15.a) 

x y 5 yy sin( )V cos( )V k y= θ − θ − − Ω& % % %% %
      (15.b) 

6k θθ = ω − θ − Ω&% % %%
        (15.c) 

Equations (13) represent xyθ -controller equations. Next, the intermediate 

control inputs will be found to drive ( )x yV ,V , ω% % %
to zero. The dynamic 

equations of ( )x yV ,V , ω% % %
 are: 

*
x xn y x 1

1
V U V V p

M
= + ω − +&% &

      (16.a) 
*

y yn x y 2
1

V U V V p
M

= − ω − +&% &

      (16.b) 
*

n 3
1

U p
J ωω = − ω +&% &

        (16.c) 

Expressions of 
( )* * *

x yV ,V , ω& & &
 in terms of other state variables can be 

easily obtained by differentiating equations (13) and substituting each 
derivative by its expression in terms of the state variables. To stabilize 

( )x yV ,V , ω% % %
 to zero, it is sufficient to select ( )xn yn znU , U , U

 equals 
to, 

2
xn 1 1 x

KˆU Mu u V
4

= − %

       (17.a) 
2

yn 2 2 y
KˆU Mu u V
4

= − %

       (17.b) 
2

n 3 3
KˆU Ju u
4ω = − ω%

       (17.c) 
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where 
*

1 7 x y x 1 x
K

ˆu k V V V cos( )x sin( )y p (t) V
4

= − − ω + − θ − θ − −% & %% %

 
*

2 8 y x y 2 y
K

ˆu k V V V sin( )x cos( )y p (t) V
4

= − + ω + + θ + θ − −% & %% %

 
*

3 9 3
K

ˆu k p
4

= − ω + ω − θ − − ω%% & %

 
The dynamic equations of (16) in closed loop become, 

2
x 7 x 1 x 1 1 x

K M K 1
V k V cos( )x sin( )y p (t) V u u V

4 M 4 M
= − − θ − θ + − − −

%
&% % % %%% %

  (18.a) 

2
y 8 y 2 y 2 2 y

K M K 1
V k V sin( )x cos( )y p (t) V u u V

4 M 4 M
= − + θ + θ + − − −

%
&% % % %%% %

  (18.b) 

2
9 3 3 3

K J K 1
k p u u

4 J 4 J
ω = − ω − θ + − ω − − ω

%
& %% % % % %

     (18.c) 

Equations (17) are x yV V ω
-controller equations. The output of the x yV V ω

-
controller is sent to the module that solves the nonlinear equations (2) to 

obtain the true control inputs 
( )f r f r, ,F ,Fδ δ

. The following paragraph 
presents the algorithm used to compute the true control inputs knowing the 
intermediate inputs and the state variables. The set of nonlinear algebraic 

nonlinear equations has four unknowns represented by 
( )f r f r, ,F ,Fδ δ

. 

To guarantee a unique solution to this problem, the input 
rF  is set to zero. 

Let 

( )T
1 2 2H(x) h (x) h (x) h (x)=

      (19) 
where 

f f f f r r r r
1 x xh (x) A sin( ) F cos( ) A sin( ) F cos( ) B V U= − δ + δ − δ + δ − ⋅ −  

f f f f r r r r
2 y yh (x) A cos( ) F sin( ) A cos( ) F sin( ) B V U= δ + δ + δ + δ − ⋅ −  

{ } { }f f r f f r r r r f
3 zh (x) C A cos( ) F sin( ) b U C A cos( ) F sin( )= δ + δ − ⋅ω− − δ + δ

 

( )f r f r rx , ,F ,F ,  with F 0.= δ δ =
 

We suggest taking the controller output equals to the third iteration value of 
the Newton-Raphson algorithm given by equation (19). Simulations have 
revealed that only three iterations are necessary to reach the convergence. 

x x(k)
H

x(k 1) x(k) ( ) H(x(k))
x =

∂+ = − ⋅
∂      (20) 
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The initial value x(k 0)=  is equal to the previous controller output. In other 

words, 
( )f r f, ,F x(k 3)δ δ = =

. 
x x(k)

H
( )

x =
∂
∂  represents the Jacobian matrix 

of H(x) at x = x(k). 
To be able to compensate for mass, moment of inertia, viscous ratios and 
friction coefficient variations, the proposed controller is provided with an 
adaptation module. That module is responsible for computing parameters M̂ , 
Ĵ  and ip̂ , i 1,2,3= . The proposed algorithm is based on the projection method 
[11] defined as follows: 

i im i iM i im iM i
ˆ ˆ ˆ ˆProj y, y , if  { }  or  {  and y 0}  or {   and y 0}  θ = θ ≤ θ ≤ θ θ ≤ θ ≥ θ ≤ θ ≤ 

 
2 2
im i

i i im2 2
im im i

ˆ
ˆ ˆProj y, y[1 ] , {  and y 0} 

( )

θ − θ θ = − θ ≤ θ <  θ − θ − ρ  
2 2
i iM

i iM i2 2
iM i iM

ˆ
ˆ ˆProj y, y[1 ] , {  and y 0} 

( )

θ − θ θ = − θ ≤ θ >  θ + ρ − θ  

where imθ , iMθ and iρ  are real numbers. y  is the function that is being 
projected. 
The definition indicates that the projection of the function y  is equal to itself 

as far as iθ̂  is inside or is moving towards the interval [ ]im iMθ θ
. If iθ̂  is 

outside the interval and is moving in the wrong direction, the projection of y  
is equal to a fraction of y .The variable at the right hand side of the equality 

will represent iθ̂& . Therefore, when iθ̂  will be leaving the interval [ ]im iMθ θ
, 

the algorithm will reduce iθ̂& , immediately. The adaptation strategy based on 
the projection method will guarantee that estimated parameters remain and 

converge inside the predefined domain [ ]im i iM iθ + ρ θ − ρ
. Predefined lower 

and upper bounds of the estimated parameter iθ̂  are represented by imθ and 

iMθ . The positive real number iρ  is chosen by the designer. The adaptation 
equations could be obtained from the stability study of the closed loop system 
describes by equations (12, 15 and 18). However, for the sake of simplicity, 
an alternative method that gives the same results is preferred in this paper. 
The equations are obtained by inspection using the following rule of thumb: 

For instance, to find the adaptation law for M̂ , (i.e.,M̂
&

), we use the equation 

(18.a) and the equation (18.b) since M%  appears in both of them. The function 
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y of the projection function is equal to xV%  (since it is the state variable of 

equation (18.a)) multiplied by the factor of M%  in the equation (18.a) (i.e., 

1u−  in this case) plus yV%
 (since we are now considering equation (18.b)) 

multiplied by 2u−  (the factor of M%  in the equation (18.b)). The adaptation 
laws for the proposed controller are: 
 

{ }1 x 2 y
ˆ ˆM Pr oj u V u V , M= α − −& % %

      (21) 

{ }3 z
ˆ ˆJ Pr oj u V , J= β −& %

       (22) 

{ }1 1 x 1ˆ ˆp Pr oj V , p= γ& %

       (23) 

{ }2 2 y 2ˆ ˆp Pr oj V , p= γ& %

       (24) 

{ }3 3 3ˆ ˆp Pr oj V , pω= γ& %

       (25) 
 

Parameters α , 1γ , 2γ and 3γ  are positive gains. It is possible to show that the 
closed loop system described by equations (11-15-18) along with the 
adaptation module represented by equations 21 to 25 is stable and converges 
to its equilibrium point. The proof is given in the appendix section. 
 
 
III - RESULTS AND DISCUSSION 
 
Simulations are now performed to assess the proposed design method 
effectiveness. The robot nominal parameters are given at Table 1. The 
proposed controller is tested in two different situations. The first case 
assumed that the controller knows the robot parameters, perfectly. The 
adaptation module is therefore not used. The robot parameters that appear in 
the controller equations are equal to their nominal values. The robot is used 
to follow the circular path represented by the following equations. 
 

2
ref ref refx ( ) cos( t),   x (t=0) = x (t 0) = 0

10 10

π π= − =&& &

 
2

ref ref refy ( ) sin( t) , y (t=0) = ,  y (t 0) = 0
10 10 10

π π π= − =&& &

 
ref

ref
ref

y
(t) arctan( )

x
θ =

&

&  
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Controller gains are given at Table 1. Figure 4 illustrates the tracking 
performance of the controller. The initial position of the robot is x = 0.1m, y 

= 0 and the
015θ = − . One can see that a perfect tracking performance is 

achieved. The robot is able to closely follow the desired trajectory. Figure 5 
shows the vehicle speed. After a peak at the very begin of the trajectory, a 
steady state speed of about 0.3 m/s is reached at t = 0.2 second. Figures 6 
and 7 show the other state variables of the system. They are bounded. All of 
them converge to their steady state values after 1 second. Controller outputs 
are illustrated at Figures 8.a and 8.b. Once again, these signals are all 
bounded and their steady state values are realistic. 
 

Table 1  :  Model parameters 
 

M 1kg=  
rL 2m=  r 1µ =  

J 1N.m=  fL 2m=  f 1µ =  
 

Table 2  :  Control gains 
 

1k 5=  2k 5=  3k 10=  
4k 100=  5k 100=  6k 10=  
7k 100=  8k 100=  9k 10=  

 

xU

yU

Uθ

xV%

yV%

ω%

x%

y%

θ%

fδ

rδ

fF

Eq. 19Eq. 17Eq. 13

Eq. 9

xy ControllerθΩ

xy  Controllerθ x yV V  Controllerω Newton Module
*
xV

*
yV

*ω

*x

*y

*θ

θ

x

+

+

−

−

+

+

−

−

xV

* * *[x ,y , ]θ

ω

1

S

xyθ

refxyθ

xyθΩ

+−

 
 

Figure 3  :  Controller structure 
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Figure 4  :  Robot motion in the x-y plane: dash-line: actual trajectory,  
                   continuous line: desired trajectory. 
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Figure 5 :  Speed V 
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Figure 6  :  Angle beta 
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Figure 7  :  Angular speed 
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Figure 8  :  Control efforts 
 
In the second situation, the robot parameters are abruptly changed from their 
nominal values. The wheeled mobile robot and the controller parameters are 
given at Table 3. The robot is used to follow the path described by the 
following equations: 
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The initial position of the robot is x = 0.1 m, y = 0 and the
015θ = − . Robot mass 

and moment of inertia increase five times at t = 3 second. Controller 
performances when the robust gain K = 0 and the adaptation module is off are 
compared to the performances when the gain K is equal to 10 and the adaptation 
module is used. Figure 9 illustrates the controller’s tracking performances in the 
x-y plan when K = 10 and the adaptation module is on. We can see that 
parameter variations have negligible effects on the controller capability to follow 

the desired trajectory. Figure 10 shows angles (t)θ  and ref (t)θ  waveforms. One 

can note that a good tracking performance is achieved. The error ref(t) (t)θ − θ  is 
highlighted at Figure 11. Figure 12 shows the controller performance when K = 
10 and the adaptation module is switch off. We see that the performance 

degraded considerably when robot parameters change. The error ref(t) (t)θ − θ  is 
highlighted at Fig 13. Simulation results clearly demonstrate the benefit of the 
robust adaptive characteristic. 
 

Table 3  :  Model and controller parameters 
 

4k 100=
 

M 5kg=
 

rL 2m=
 

r 1µ =
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5k 100=
 

J 5N.m=
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Figure 9  :  Robot motion in the x-y plane: discontinous line: actual  
                   trajectory, continuous line: desired trajectory 
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Figure 10  :  Orientation and its reference when K=1 0 and adaptation module  
                     is on. discontinous line: reference, continuous line: orientation 
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Figure 11  :  Orientation error  when K= 10 and adaptation module is on 
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Figure 12  :  Orientation and its reference when K= 0 and adaptation module is  
                     off. discontinous line: reference, continuous line: orientation. 
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Figure 13  :  Orientation error  when K= 0 and adaptation module is off 
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Figure 14  :  Estimated inertia when K= 10 and adaptation module is on 

 
 
V - CONCLUSION 
 
An innovative approach is proposed to design a trajectory tracking controller 
for a wheeled mobile robot which parameters are assumed unknown. It 
combines the robust adaptive backsteeping nonlinear control design method 
and the well-known Newton-Raphson method, a nonlinear algebraic equation 
resolution method. Simulations are used to evaluate the controller 
performance. The results demonstrate the effectiveness of the new control 
design method. The control is able to follow perfectly a desired trajectory 
even if robot parameters change on route. 
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Appendix 
 
This appendix shows the stability of the closed loop mobile robot system. Let 
us consider the following candidate Lyapunov function 

32 2 2 2 2 2
j j j

j x j x j 1 j

1 1 1 1 1 1 M J
V V (x y ) p ( M J)

2 2 2 2 2

θ θ

= = =
∑ ∑ ∑= Ω + + + +θ + + +

γ α β
%% % % %%% %

  (26) 
Differentiating V  and replacing the derivative of each variable in the result, 
and using the following properties enjoyed by the projection algorithm [11], 

[ ] yˆy,Proj i ≤θ
 and 

[ ] y
~ˆy,Proj

~
iii θ≥θθ

; yields, 
2 2 2 2 2 2 2 2 2

1 x 2 y 2 4 5 6 7 x 8 y 9V (k k k ) (k x k y k ) (k V k V k )θ≤− Ω + Ω + Ω − + + θ − + + ω%& % % % % % %% %
 (27) 

Integrating (27), one obtains 

0 0

t t

t t tt t
lim Zd lim Vd V(0) lim V(t)
→∞ →∞ →∞

∫ ∫τ ≤ − τ ≤ − ≤ ∞&

            (28) 
where 

2 2 2 2 2 2 2 2 2
1 x 2 y 2 4 5 6 7 x 8 y 9Z (k k k ) (k x k y k ) (k V k V k )θ= Ω + Ω + Ω + + + θ + + + ω%% % % % % %% %

 
By virtue of Barbalat’s lemma [11], we can conclude that the system 
converges exponentially. 
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