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ABSTRACT  
 
A new hybrid force-position control method for uncertain robotic manipulator 
interacting with its environment is presented. First, the dynamical model system 
in the compliance frame is derived from the usual joint frame model and leads to 
two sets of equations due to the constraint associated to the contact surface. 
Next, the two dynamics are separately used for the synthesis of position and 
force tracking controllers. For the position control part, the design method 
consists of an estimated-parameters dependent on coordinate transformation and 
a control law derived from a backstepping procedure. The force control law has 
two folds: first it compensates the dynamical interaction between the end-
effector motion and the force induced by the environment and secondly, imposes 
a desired force using a proportional-like equation. Finally, a parameter-
adaptation algorithm derives from stability criteria and dependent both on the 
position and force tracking errors. Simulation results on a four-degree of 
freedom robotic system tracking a triangle while maintaining a constant contact 
force prove the effectiveness of our solution. 
 
Keywords  :  Control, bakstepping, force, position, adaptive. 
 
 
RÉSUMÉ 
 
 Contrôle adaptatif de commande hybride force-position pour un 
manipulateur robotique 
 
Une nouvelle méthode de commande hybride force-position pour un 
manipulateur robotique incertain, en interaction avec son environnement est 
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présentée. Dans un premier temps, le modèle dynamique du système dans le 
référentiel de l’outil est obtenu à partir du modèle dynamique usuel dans le 
référentiel des joints qui donne deux ensembles d’équations des contraints 
associées à la surface de contact. Ensuite, ces ensembles d’équations de 
contraintes en deux dynamiques sont utilisées séparément pour la synthèse 
des contrôleurs de force et position. Pour la commande de position, la 
méthode de conception consiste à faire une estimation des paramètres qui 
dépendent de la transformation des coordonnées et de la loi de commande 
découlant de la procédure du backstepping. La loi de commande de force a 
deux objectifs : premièrement, Il compense les interactions dynamiques entre 
le mouvement de fin de l’effecteur et la force induite par l’environnement et 
deuxièmement, il impose une force désirée en utilisant une structure 
semblable au contrôleur proportionnel. Finalement, un algorithme 
d’adaptation des paramètres est obtenu à partir du critère de stabilité and des 
erreurs de suivie de position et de force. Les résultats de simulation sur un 
système robotique à quatre degrés de liberté faisant un suivi de trajectoire 
triangulaire, tout en maintenant une force de contact constante, prouvent 
l’efficacité de la méthode proposée. 
 
Mots-clés  :  Commande, backstepping, force, position, adaptatif 
 
 
I - INTRODUCTION 
 
Numerous robotic tasks (e.g. contour following, grinding, scribing, deburring 
and assembly-related tasks) generate physical contact between the robot end-
effector and the environment. In these cases, the force due to the contact with 
the surface has to be taken into consideration and therefore both the force and 
motion control are required. Two goals are related to this problem. The first 
is to maintain a certain force magnitude applied by the end-effector on the 
surface and the second is to maintain the end-effector’s motion on a desired 
trajectory. This problem has been intensively studied in the last two decades 
and two major approaches emerge. The impedance control approach 
proposed by Hogan [1] aims to control the position and the force by adjusting 
the mechanical impedance of the end-effector to external forces generated by 
the contact with the environment.  This class of solution can further be 
divided into dynamic and classical impedance control when the manipulator 
dynamics are taken into account or not. The second approach proposed by [2] 
is referred to hybrid control. The directions in which the manipulator end-
effector position should be controlled and the ones in which the contact force 
control is performed are selected so as to simultaneously follow a given 
desired trajectory and force. Again, taking arm dynamics into account or not, 
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to increasing stability and performance leads to two subclasses. The works of 
Khatib [3], Yoshikawa [4] and McClamroch and al. [5] are majors 
contributions in the hybrid force –position approach. The hybrid control 
synthesis can be directly performed either in the joint space [4] or the task 
(Cartesian) space where the specifications are naturally given [7]. The 
actuator dynamics may [8] or may not be incorporated to the system to be 
controlled. Several interesting alternative solutions for the position-force 
control problems are also reported in the literature [6] and references therein. 
In addition, there exist some interactions between robot and motor dynamics 
which cannot be neglected. Hence in this paper, we consider a robotic system 
consisting of a manipulator arm and its joints actuators. A novel adaptive 
hybrid force position technique which guarantees asymptotic convergence of 
both the arm and motor variables is proposed. It consists of first, deriving the 
dynamical model system in the compliance frame from the usual joint frame 
model and lead to two sets of equations due to the constraint associated to 
contact surface. Next, the two dynamics are separately used for the synthesis 
of position and force tracking controllers. For the position control part, the 
design method consists of estimated-parameters dependent coordinate 
transformation and control law derived using a backstepping procedure. The 
force control law has two folds: first it compensates the dynamical interaction 
between the end-effector motion and the force induced by the environment 
and secondly, imposes a desired force using a proportional-like equation. 
Finally, a parameter adaptation algorithm is derived from a stability condition 
and is dependent both on the position and force tracking errors. In [10], the 
problem of force/position tracking for a robotic manipulator in compliant 
contact with a surface under non-parametric uncertainties is considered. A 
novel neuro-adaptive controller is proposed, that exploits the approximation 
capabilities of the linear in the weights neural networks [10], guaranteeing 
the uniform ultimate boundedness of force and position. In [11] the problem 
of output feedback tracking control of a class of Euler-Lagrange systems 
subject to nonlinear dissipative loads is approached. The proposed controller-
observer scheme renders the origin of the error dynamics uniformly globally 
asymptotically stable 
This paper is organized as follows. The manipulator and actuators dynamical 
models in the compliance frame are derived in the first part of section 2. 
Under the assumption that the system parameters are perfectly known, a 
design method so that the end-effector tracks a desired position while it 
maintains a desired force with the environment is presented in the second 
portion of section 3. The adaptive method is given in the third part of section 
3. It is assumed that only the manipulator parameters are unknown. 
Numerical simulation results are offered in section 3. Finally, a conclusion is 
drawn in section 4.  
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II - FUNDAMENTAL CONCEPTS 
 
II-1. Robot Dynamics 
 
II-1-1. Manipulator Dynamics 
 
An n degrees of freedom rigid robot arm with environmental contact can be 
described as  
 

e fD( q )q B( q,q )q g( q ) τ τ+ + = +&& & &                                                                    (1) 
 

with 
×∈ n nD( q ) R  is the symmetric and positive definite joint space inertia 

matrix, 
×∈ n 1B( q,q )q R& &  represents the Coriolis and centrifugal terms, 

n 1g( q ) R ×∈  

represents the gravitational terms, 
×∈ n 1q R  is the joint angles matrix, 

×∈ n 1
e Rτ  

and 
×∈ n 1

f Rτ  are the motor (actuators) torques and the interaction torques due 
to contact with the environment respectively. 
B( q,q )&  can be written such that −D( q ) 2B( q,q )& &  is skew-symmetric. The robot 
can also be written in linear form in terms of a parameters vector θ as 
follows: 
 
D( q )q B( q,q )q g( q ) Y( q,q,q )θ+ + =&& & & & &&                                                              (2) 
 
where Y  is a matrix of known functions and ∈

rRθ  is the vector of constant 
parameters. 

The interaction torque 
×∈ n 1

f Rτ  in the joint space is related to the interaction 

force 
m 1f R ×∈ ( m is the dimension of the task space which is assumed to be 

the same as the Cartesian space) at the end-effector through 
= T

f J ( q ) fτ                                                                                            (3) 

where 
×∈ m nJ( q ) R  is the manipulator task Jacobian matrix that is supposed to 

be nonsingular. 
 
II-1-2. Actuators Dynamics 
 
The main objective of robot force-position control is to compute the required 
torque for the robot to follow a desired trajectory of position and force. DC 
motors are usually used to generate the driving robot arms torques. The 
actuators dynamics can be described by 
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j e
j j j j j j

di
L R i K u

dt
ω+ + =

    =j 1,2, ,nL                                                                (4) 

with jω  being the robot angular velocity, jR  the armature circuit resistance, 
jL  the armature circuit inductance, 

e
jK  the motor back EMF constant, ji  and 

ju  the armature current and voltage respectively. 

The robot angular velocity jω
 is related to the joint velocity j

q&
 through 

j j jN qω = &         =j 1,2, ,nL                                                                      (5) 

where jN  is the jth joint gear ratio. The armature current and the motor 
torque are related by 

= T
ej j j jN K iτ         =j 1,2, ,nL                                                                   (6)  

where 
T
jK  is the jth motor torque constant. Expressing the armature current ji  

in terms of the motor torque jτ  and substituting the resulting expression and 
(5) into (4) yields 

+ + =j ej j je
ej j j jT T

j j j j

L d R dq
K N u

dt dtN K N K

τ
τ

=j 1,2, ,nL                                         (7) 
 
The equation (7) can be written in a closed matrix form as   

+ + =e e mM N K q uτ τ& &                                                                                     (8) 

Where
T

j j jM diag{ L ( N K )}= ,
T

j j jN diag{ R ( N K )}=  = e
m j jK diag{ K N }  

 =j 1,2, ,nL . 
Equations (1) and (8) completely describe both the constrained manipulator 
interacting with the environment and its actuators in the joint frame. Since the 
nature description for the end effector trajectories and interaction forces 
during constrained motion is given in a coordinate frame fixed in the task-
oriented space, it appears convenient to use a description of the manipulator 
and actuators dynamics in that frame. 
 
II-1-3. Manipulator Dynamics in the Cartesian Frame 
 
For convenience the robot and actuator dynamics are rewritten below 

e fD( q )q B( q,q )q g( q ) τ τ+ + = +&& & &                                                                 (9a) 

          + + =e e mM N K q uτ τ& &                                                                         (9b) 
The end-effector position and orientation in the Cartesian space is related to 

the joint angles by  =r h( q ) and  =r J( q )q& &  

where ×∈ m 1r R  is the position and orientation vector and h( q ) is the robot 
kinematic transformation function. 
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The end-effector motion equations can then be written as 
eH( r )r C( r ,r )r G( r ) f f+ + = +&& & &                                                (10a) 

+ + =r e r e r rM f N f K r u& &                                                             (10b) 
where the relationship between the joint space and task space quantities is 
established through the following equations: 

T 1H( r ) J ( q )D( q )J ( q )− −= , 
T 1 1C( r,r ) J ( q )B( q,q )J ( q ) H( r )J( q )J ( q )− − −= − &&  

TG( r ) J ( q )g( q )−= , 
T

e ef J ( q )τ−= ,
T T

rM J ( q )MJ ( q )−= ,
T T T T

r rN J ( q )NJ ( q ) M J ( q )J ( q )− −= + &
 

T 1
r mK J ( q )K J ( q )− −=  and 

T
ru J ( q )u−=  

 
II-1-4. Robot Dynamics in the Compliance Frame 
 
Let 

0 S be the base reference of Cartesian frame. The end-effector orientation 
r  is usually described in 

0 S in terms of roll-pitch-yaw or any proper set of 
Euler angles. However, the rotational part of a robotic task is described in 
terms of angular velocity and torques in

0 S. If x  denotes the vector of linear 
and angular velocities then the following general relation hold 

cx T( r )r=& &                                                                                           (11) 

The orientation-dependent matrix T( r )  is invertible, except for isolated 
points and means that the angular is not an exact differential of the 
orientation. 
Let 

t S  be a frame associated to the task and usually referred as compliance 

frame. The desired force df  and trajectory dx  and velocity dx&  associated to 
the task are naturally expressed in this frame. Linear velocity and force are 

transformed from 
0 S into 

t S  by means of a ×3 3 rotation matrix LR ( r ). 

Similarly, angular velocity and torque are transformed by AR ( r ) . Therefore, 
the following relation holds 
 

= =cx R( r )x R( r )T( r )r& & &                                                      (12) 

Where 

 
=  
 

L

A

R ( r ) 0
R( r )

0 R ( r )   

with 
− =1 TR ( r ) R ( r ), 

and 
6 1

cx R ×∈&  denotes the linear and angular velocity vector describes into 
t S .  

For simplicity let 
− −= 1 1L( r ) T ( r )R ( r )  then (12) becomes  

= cr L( r )x& &              (13) 
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The end-effector motion equation in the compliance frame can be easily 
obtained: 

c c c c c ce c intH ( r )x C ( r ,r )x G ( r ) F F+ + = +&& & &                                        (14a) 

c e c e c c cM f N f K x u+ + =& &                                                                       (14b) 
where  

= T
c intF L f ,

T
cH L H( r )L= ,

T T
cC L C( r )L L H( r )L= + &

,
T

cG L ( q )G( r )= , = T
ce eF L f ,

c rM M= c rN N= , c rK K L= , c ru u=  

The velocity vector cx&  can be partitioned according to the division of 
constrained and unconstrained directions  

( )=
T

c p fx x x& & &
                                                                       (15) 

Since we assume that both the tool and the contact surface are rigid, the end-
effector motion in the constrained direction is negligible compared to the 

motion in the unconstrained one. Therefore, the velocity vector cx&  can be 
written as 

( )=
T

c px x 0& &
                                                                     (16a) 

The interaction force also has the following decomposition, since its 
components in the unconstrained directions are negligible. 

( )= T

c int cF 0 f                                                                        (16b) 

with cf  denoting the contact force in the force-controlled directions.  
The constrained motion also induces a certain decomposition of the joint 

velocity vector q&  and the relation (16c) below holds. 
( )T

cq q 0=& &           (16c) 

Since cx&  and q&  are related through the Jacobian matrixJ( q ) the latter must 
have the following structure 

c1 c2

c3

J J
J

0 J

 
=  
                                                                                            (17) 

Introducing (16a, 16b) and (17) into (14a and 14b) gives the end-effector 
motion and the actuators dynamics both in the constrained and unconstrained 
directions, 

c11 p c11 p c1 1H x C x G F+ + =&& &                                                                           (18a) 
+ + =c11 1 c11 1 c11 p c1M F N F K x u& &                                                                     (18b) 

c21 p c21 p c2 2 cH x C x G F f+ + = +&& &                                                                   (19a) 
+ + =c21 2 c21 2 c21 p c2M F N F K x u& &                                                                   (19b) 

where the following notation has been used 
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                     = T
ce 1 2F ( F F )   = T

c c1 c2G (G G )  
c11 c12

c
c21 c22

X X
X

X X

 
=  
  , c c cX { H ,C }∈ , 

c11
c

c21

Z 0
Z

0 Z

 
=  
  , c c c cX { M ,N ,K }∈  

It is important to point out that equations (18a, 19a) have been already 
obtained and used in [7]. Introducing the actuators stage in the manipulator 
dynamics leads to the decoupled equations (18b, 19b). The particular form of 

the cZ  matrix is induced by the forms of the matricesM , N , mK  and J . 

The following sections are devoted to the synthesis of c1u  and c2u  so that the 

end-effector tracks a desired trajectory dx  while maintaining a desired 

constant force df  with the environment. The dynamics (18a and 18b) are 
used for the position tracking problem while (19a and 19b) for the force 
control. First, the model parameters are assumed to be known and a non-
adaptive version of the controller is derived. The coordinate transformation 
and control laws involved in the non-adaptive version are transposed in the 
adaptive one with the unknown parameters replaced by their estimation. The 
parameters estimation algorithm is derived from stability criteria. 
 
II-2. Controller Design 
 

In this section, the manipulator and the actuators dynamics equations 
parameters are assumed to be known. The design objective is to satisfy the 
specifications described below. 
 
II-2-1. Design Specifications 
 

Determine c1u  and c2u  so that the position px ( t ) follows the desired trajectory 
pdx ( t )and the applied forcecf ( t )  follows the desired forcedf ( t ) as → ∞t . 

 
II-2-2. Position Control 
 

Let us consider the dynamics (18a and 18b) and define 
1 p

2 p

3 1

1 c 1

x x

x x

x F

v u

= 
= 


= 
= 

&

                                                                        (20) 
Its state space representation is given by 

=1 2x x&                                                           (21a) 
= − − +c11 2 c11 2 c1 3H x C x G x&                                                     (21b) 
= − − +c11 3 c11 3 c11 2 1M x N x K x v&                                               (21c) 

The tracking error dynamics can be described as follows 
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=1 2e e&                                                                        (22a) 
c11 2 c11 2 c1 3

c11 2d 3d c11 2d

H e C e G e

{ C x x H x }

= − − + +
− + −

&

&                                         (22b) 
c11 3 c11 3 c11 2 1

c11 3d c11 2d c11 3d

M e N e K e v

{ N x K x M x }

= − − + +
− − −

&

&                                (22c) 
with the error variables defined by 

= −1 1 1de x x   = −2 2 2de x x   = −3 3 3de x x  
Where 

=1d pdx x   =2d pdx x&   =3d 1dx F  
The variable 1dF  stands for the desired value of 1F . 
 
Proposition 1: 
Using a Backstepping procedure, the system described by equations (22a, 

22b and 22c) is asymptotically stable if the control input 1v  is such that 
= + + + +

+ + − − +
1 c11 3 c11 2 c11 3d c11 3d c11 2d

*
c11 3 c11 c11 3 3 2 c11 c11 3

v N e K e M x N x K x

M e M H { K } M Hξ ξ ξ
&

&&                          (23) 
where 

2 2 1 1e K eξ = +  
c11 3 3 c11 2 c1 c11 2d 3d

c11 2d c11 2 2 1

H e C e G C x x

H x H ( K )

ξ
ξ ξ

= − − − +
− − − −&   

*
3 c11 2 c1 c11 2d 3d

c11 2d c11 1 2 c11 2 2 1

e C e G C x x

H x H K e H ( K )ξ ξ
= + + −

− + − −&  
 
II-2-3. Force Control 
 

Let now consider the dynamics (19a and 19b) and set =2 c2v u . Differentiating 

(19b) and replacing px&  and px&&  by their expressions from respectively (19b) 
and (19a) yields the following equivalent dynamics of the set (19a and 19b), 

2 2 2 2 2 c2 cv v F F F G fα β δ γ η+ = + + − +& &&&                                        (24) 
where  

1
c21 c21H Kα −= ; 

1 1 1
c21 c21 c21 c21 c21 c21(C K H K K K )β − − −= − &

; 
1 1 1 1 1

c21 c21 c21 c21 c21 c21 c21 c21 c21 c21 c21 c21 c21 c21{H K N C K M H K M H K K K M }δ − − − − −= + + −& &
; 

1
c21 c21 c21H K Mγ −= ; 

1 1 1 1
c21 c21 c21 c21 c21 c21 c21 c21 c21 c21 c21C K N I H K K K N H K Nη − − − −= + − +& &

 

The input 2v can be decomposed in 2 components. The first 21v  has the 
objective to compensate the dynamical interaction between the end-effector 

motion and the force induced by the environment. The second component22v , 
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as explained later, can be obtained by a simple proportional control law. 
Therefore 

2 21 22v v v= +                                                             (25) 

We select 21v such that 
1

2 2 2 c2 d

21

z ( z F F F G f )

v z

α β δ γ η− = − + + + − +


=

& &&&

                          (26) 
It is important to note that even if equation (26) involves derivatives of some 

variables, the output 21v  is differentiable (hence continuous) and is one of the 
advantages of taking into account the actuator dynamics during the design 
process. 
The resulting dynamics after replacing (25 and 26) into (24) is 

22 22 d cv v f fα β+ + =&                                                (27) 

We propose to choose 22v  of the form 
22 p c d pv K ( f f ) K f∆= − − = −                                           (28) 

 

which is indeed a simple proportional control law. pK  is a positive definite 
matrix. The closed loop force dynamics are given by 

p pK f ( K I ) f 0α ∆ β ∆+ + =&

                                                         (29) 

If pK  is selected such that 
pK I 0β + > ,                                                                   (30) 

then, the system described by (24) is asymptotically stable; hence the 
tracking force error converges to zero. 
 
Remark 1 

A particular value of pK satisfying (30) can be computed after 

finding
max sup( )

π
β β=

, such that π is the robot workspace. Then
1

p maxK β −> − . 
 
II-2-4. Adaptive Controller Design 
 
In this section, we assume that all robot parameters are unknown except those 
of the actuators.  
 
II-2-4-1. Position Control 
 
The nonlinear coordinate transformation is time-varying since it depends on 
estimated parameters. 

1 1
ˆ eξ =                                                            (31a) 
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= +2 2 1 1
ˆ e K eξ                                                    (31b) 

= − − − +

− + + + +
c11 3 3 c11 2 c1 c11 2d 3d

c11 2d c11 2 2 1 2 2 1 1 1

ˆ ˆ ˆˆ ˆH e C e G H x x

ˆ ˆC x H { K e K e K K e e }

ξ &

          (31c) 

where ∈ ˆˆ ˆ ˆ ˆ ˆX { H ,C,M ,N ,K } is the estimated version of the unknown parameters 

dependent function ∈X { H ,C,M ,N ,K }. The control input expression is 
chosen to be of the form (similar to (23) but with estimated parameters). 

= + + + +

+ − − + +

1 c11 3 c11 2 c11 3d c11 2d

*
c11 3d c11 c11 3 3 2 c11 3 c11 c11 3

ˆ ˆ ˆ ˆv N e K e N x K x

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆM x M H { K } M e M Hξ ξ ξ&
& &                  (32) 

                                                                                     
Differentiating (31a, 31b and 31c) one obtains 

= − +1 1 1 2
ˆ ˆ ˆKξ ξ ξ&

                                                       (33a) 
−

−

= − − + − +
+ + +

= − − + −

1
2 2 2 1 3 c11 c11 2

c11 2 c1 c11 2d c11 2d

1
2 2 1 3 c11 2

ˆ ˆ ˆ ˆ ˆK H { H e

C e G H x C x }

ˆ ˆ ˆ ˆK H W p

ξ ξ ξ ξ ∆
∆ ∆ ∆ ∆

ξ ξ ξ ∆

&
&

&

                      (33b) 
− −= − − − −
c11 c11

1 1
3 3 3 2 3 3

ˆ ˆ ˆ ˆ ˆK H W p H pξ ξ ξ ∆ Ψ ∆&
&

                                    (33c) 
Where (since the linearly parametrizability property holds) 

= + + + +2 c11 2 c11 2 c11 c11 2d c11 2dW p { H e C e G H x C x }∆ ∆ ∆ ∆ ∆ ∆& &  
= + + + +

+
3 c11 3 c11 2 c11 3d c11 2d

c11 3d c11 3

W p { N e K e N x K x

M x M e }

∆ ∆ ∆ ∆ ∆
∆ ∆& &  
= + + +

− + + +

3 c11 2 c1 c11 2d c11 2d

c11 2 2 1 2 2 1 1 1

ˆ ˆ ˆ ˆp C e G C x H x

Ĥ ( K e K e K K e e )

Ψ ∆ & & & &
&

&

 
ˆX X X∆ = − . 

The parameter = − ˆp p p∆  denotes the difference between the unknown robot 

parameters vector p  and their estimation p̂  from an adaptive algorithm yet to 
be determined. Note that if =X 0∆  then =p 0∆ . 
 
II-2-4-2. Force Control 

 

Again, the control input 2v  decomposition given by equation (25) is adopted 

and, 21v and 22v  are respectively selected such that 
1

2 2 2 c2 d

21

ˆ ˆ ˆˆ ˆ ˆz ( z F F F G f )

v z

α β δ γ η− = − + + + − +


=

& &&&

                      (34) 
22 p c d pv K ( f f ) K f∆= − − = −                               (35)  

The closed loop force dynamics is then described by 
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p p 4
ˆˆ K f ( K I ) f W pα ∆ β ∆ ∆= − + +&

                                      (36) 

where the matrix pK  is such that  
1 1

p p
ˆˆ ˆs( K ) Kα β α− −= +  

is positive definite. The lengthy expression of 4W  is omitted for the sake of 

simplicity. Since ps( K ) involves estimated parameters, offline computation 

of pK  requires prior knowledge of estimated parameters range or bounds. If 
this is not the case, the designer can force the estimated parameters to remain 
into a predefined domain using a projection adaptation algorithm as 
mentioned in remark 1. 
 
II-2-4-3. Parameters Adaptation algorithm 

 
Rearranging equations (33) and (36) in a closed form yields, 

−

−−

−

   −       − −   =    − −       −       

   
   −   + +   −−     

  

11

2 22

3
3

3

p

1
c 1 2

11
c 1 3c 1 3

1
4

ˆ ˆK I 0 0
ˆˆ I K I 0

0 I K 0 ˆˆ
0 0 0 s( K ) ff

0 0
ˆ 0H W

p p
ˆˆ HH W

0W

ξ ξ
ξξ
ξξ
∆∆

∆ ∆
Ψ

α

&

&

&

&

&

   (37) 

or equivalently  = + +s
ˆ ˆA W p pξ ξ ∆ Ψ∆&

&  

where ( )=
T

1 1 1
ˆ ˆ ˆ ˆ fξ ξ ξ ξ ∆

. Note that sA  is Hurwitz since the gains iK , 
i 1, ,3= L  and ps( K ) are positive definite. 
We now introduce the augmented error y  and the error augmentation 
ε̂ defined by 

ˆ ˆy ξ ε= −                                                   (38) 
= +s

ˆ ˆA pε ε Ψ∆& &   =ˆ(0 ) 0ε                   (39) 
The augmented error dynamics are then, 

sy A y W p∆= +&                                                (40) 
Next we define the following positive definite Lyapunov function 

T T 11
V y y p p

2
∆ Γ ∆−= +

                                            (41) 
Γ  is a positive definite matrix. The derivative of V  is 
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T T T 1 T

s sV y ( A A )y 2 p ( p W y )∆ Γ ∆−= + + +&
                      (42) 

If the estimation dynamics are select such that 
Tp W y∆ Γ= −& , 0Γ >                                  (43) 

The derivative of V  becomes 
T T

s sV y ( A A )y= +&
                                                       (44) 

 

Since sA  is Hurwitz and
T

s sA A=  then +T
s s( A A ) is negative definite, therefore 

V&  is negative semi-definite. We can show that the estimated parameters are 
bounded and the position and force tracking error converge to zero.  
 
Remark 2: projection algorithm 
The projection variant given below can be used instead of (43) to force the 

estimated parameters to remain in a predefined domain, say, x max{ x : x x }Ω = ≤ . 
Tˆ ˆp p Pr oj(W y, p )∆ Γ= − = −&&                                (45) 

with the Pr oj()  function is defined as follow 
ˆPr oj( y, ) y,θ = if 

ˆf ( ) 0θ ≤  

ˆPr oj( y, ) y,θ = if 
ˆf ( ) 0θ ≥  and 

f
y 0

θ̂
∂ ≤
∂  

2
Tf f fˆ ˆPr oj( y, ) I f ( )( ) ( ) y,ˆ ˆ ˆθ θ

θ θ θ
 ∂ ∂ ∂= − 

∂ ∂ ∂     
if   

                   
ˆf ( ) 0θ >  and 

f
y 0

θ̂
∂ >
∂  

where 
2

max max
ˆ ˆ ˆ ˆf ( ) ( ) ( 2 )θ θ θ ε εθ= − +

 and ε  is a positive real number. The 

function 
ˆf ( )θ  is usually called the boundary function. If 

ˆ( t )θ  is inside the 
compact set or on its boundary and attempts to remain inside it, the 
adaptation law is equivalent to the gradient method. The algorithm forces 
each estimated parameter to remain into xΩ  by subtracting a suitable value to 

y when 
ˆ( t )θ  is on the boundary and has the tendency to move away from it. 

Indeed, the term 

                

2
Tf f fˆ( I f ( )( ) ( ) )ˆ ˆ ˆθ

θ θ θ
∂ ∂ ∂−
∂ ∂ ∂                       (46)  

 
is referred to as the projected direction onto the tangent plane to the 
boundary. 
Proposé 3 
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III - RESULTS AND DISCUSSION 
 
The proposed control scheme has been tested by simulation using the robot 
given in figure 1. It is a four-degree of freedom robot arm with one prismatic 

axis, and three rotating axes. However, the motion around the 4z  axis has 
been locked for the test. The system’s dynamic model is very big and has 
been then voluntarily omitted from the paper. The manipulator links mass, 
length and inertia, and the actuators parameters are collected into Table 1. 

The end effector has to follow, at constant linear velocity =uv 0.25m / s, a 

triangle ( A,B,C ) in a plan P  describes by the equation 
 

+ + + =2x y z 1 0                                                            (47) 
 

Table 1 : Robot parameters 
 

Weight (kg ) =1m 3.75, =2m 2.5, =3m 9.165, =4m 1.151 
Length (m) =1l 0.1731, =2l 0.11229, =3l 0.1769 
Center of mass 
( m) 

=2x 0.1151, =3y 0.2301, 

Inertia (
3kg / dm ) =z2I 3 , =z3I 4 , =z3I 9.165, =x4I 7  

L( mH ) =jL 3.16 =j 1, 4L  
R(Ω ) =jR 11.5 =j 1, 4L  
K( N.m / A) =jK 2.124 =j 1, 4L  
Ke (V /( rad / s )) =e

jK 2  =j 1, 4L  
 
 
 

Table 2 : Some model parameters definition 
 

= + + +1 1 2 3 4p m m m m 
= + + + +

+ +

2 2 2
2 z z 2 2 2 4 2 4 3

2 2
4 4 3 3 4 4 3

p I m x m L m L

m z m y 2 m z L and = 2
3 3 3p m y  

 
Figure 2 shows a very good path tracking performance. The end effector 
follows the triangle with a very good accuracy. Figure 3 illustrates the end 
effector actual and desired positions into the Cartesian coordinates. One can 
easily see that actual end effector positions are very close their desired 
values. The tracking errors given at Figure 4 confirms aforementioned 
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analysis. The errors are negligible since they are less than 0.005. The 
estimated parameters are shown at Figure 5. One can note that they are 

bounded (the meaning of1p , 2p  and 3p  are given in Table 2). The 
convergence is very fast. It is worth mentioning that estimated parameters are 
controller parameters and they do not converge to the true robot parameters, 
in general. The force time-behavior is illustrated at Figure 6. We can also 
note that a good response is obtained thanks to the relative simple but 
effective force control equations (46 and 47). The adaptive feature 
considerably helps reducing the control efforts. The actuator input voltages 
and currents are shown in Figures 6 and 7. These signals are bounded too 
and they remain in acceptable ranges.  

d1

q2

q3

q4

z4

z2

z1

L1 L 2 L 3
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x2
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x3

y4
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y1
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Figure 1 : The four-DOF Robotic Manipulator 
 
 

 
 

Figure 2 : 3-dimensional representation of the position tracking  
                 performance 
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Figure 3 : End effector actual and desired positions 
 
 

 
Figure 4 : Position tracking error waveforms 

 



Rev. Ivoir. Sci. Technol., 13 (2009) 37 – 55 
 

Donatien NGANGA-KOUYA 

53

 
 

Figure 5 : Some estimated parameters 
 
 

 
 

Figure 6 : Actual and desired actuators the currents profiles 
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Figure 7 : Joint 1, 2, 3 and 4 actuators voltage profile 
 
 
IV - CONCLUSION 
 
A new adaptive force-position control method is proposed for a manipulator 
taking into account actuators dynamics and uncertainties on robot’s 
parameters. The robot is in contact with a rigid environment. Simulations 
were performed with a four-link manipulator arm and the results prove the 
effectiveness of our method since very good path and force tracking 
performance are achieved. Although the mathematical development used 
throughout the design is relatively involved, the control laws derived are 
relatively simple to implement. This implementation will be the next step of 
this work 
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